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Abstract

This paper proposes a technique for three-dimensional
reconstruction of an underwater environment from range
views acquired by an acoustic camera. The final target of
the work lies in improving the understanding of a human
operator driving an underwater remotely operated vehicle
floating close to an offshore structure. Due to the narrow
field of view and the absence of control of the sensor posi-
tion, no information is available about the degree of over-
lapping between the range images; further, speckle noise
and low resolution make more difficult the registration pro-
cess. In this paper, we propose a preprocessing method
which gives a coarse alignment of range images prior to
running the Iterative Closest Point (ICP) algorithm for the
accurate registration of views pairs. The pre-alignment is
based on the matching between the three-dimensional skele-
tons extracted from the images. A comparative analysis is
presented where our method is compared with plain ICP,
and with a technique based on principal components anal-
ysis.

1. Introduction

Underwater exploration is nowadays growing due to
both industrial and scientific needs. Fortunately, even tech-
nology is improving with the advent of smart sensors able
to provide data with high visual quality, differently from
only few years ago. Recently, computer vision scientists
have also approached underwater scene understanding is-
sues [17].

This work is have been carried out in the context of a
project aimed at the three-dimensional (3D) scene recon-
struction from a sequence of range data acquired by an
acoustic camera. The final goal is to provide a 3D scene
model to the human operator(s) of an underwater remotely
operated vehicle (ROV), in order to facilitate the naviga-
tion and the understanding of the surrounding environment,
namely an offshore rig, composed by pipes connected each

others by joints (see Fig. 1).

The underwater environment is undoubtly a complex
scenario for both the implicit limited accessibility and the
difficulty to retrieve good quality data. Typically, acoustic
systems are used to sense underwater scenes as they allow
to achieve a larger visibility and to measure range distance,
unlike the more used optical sensors. In the present case,
our data are obtained by a high frequency acoustic camera,
called Echoscope [10]. These data are affected by speckle
noise, due to the coherent nature of the acoustic signals,
which corrupts sensibly the visual quality and decreases the
reliability of the estimated 3D measures. Moreover, there is
a trade-off between range resolution and field of view. Res-
olution depends on the frequency of the acoustic signal (it
is about 3 cm at 500 KHz): roughly speaking, the higher
the frequency, the higher the resolution, the narrower the
field of view. In addition, the sensor is mounted onboard an
underwater vehicle with inherent limited capability of pre-
cise control. Therefore, as we are forced to operate with

Figure 1. Rendering of the model of an oil rig
with the ROV.



a limited field of view, range images are acquired with no
precise idea of the position and heading of the sensor. Con-
sequently, a technique to reconstruct progressively the scene
while the sensor is moving is necessary.

In this context, a technique for registering pairs of range
images having any initial pose has been explored and tested.
An enhancement of the Iterative Closest Point technique
(ICP) [2] is presented, in which the images are first pre-
aligned using the essential structure (i.e., skeletons) of the
observed objects. It is known that ICP is optimal when the
two clouds of points to be registered actually correspond to
the same distribution (or one is a subset of the other) seen
from different viewpoints, and when they are not too far
each other in the pose space. In our application, none of
the above conditions can be met: actually, as the sensor is
navigating around an object, some parts may disappear and
other may be included, and even if the degree of overlapping
is large, the point of view can be so different to preclude the
convergence of the classic ICP.

A lot of works on the registration of image pairs or the
integration of a set of range images are present in literature,
but none dealing with the particular kind of 3D data we are
using.

Among the works related to registration, the Iterative
Closest Point (ICP) procedure [2] has been already quoted,
and its earlier variants [6, 28] are worth to be mentioned.
The original algorithm is based on the search of pairs of
nearest points in the two sets, so that the rigid transforma-
tion which align them can be estimated [2]. Variants in-
clude the use of closest points in the direction of the local
surface normal [6], and the use of a robust statistics tech-
nique [28] to limit the maximum distance between points.
As said above, these works assume that one point set is a
subset of the other. Indeed, [28] foresees the possibility to
have partially overlapped data, but some thresholds must be
set, and this can be a difficult and tricky operation, critically
affecting the quality of the registration.

In [24] and [8], a force-based optimization approach is
proposed. Assuming known the points’ correspondences
among the data sets, interconnections using springs between
corresponding points is simulated.

A quite different approach has been proposed in [13].
Pairwise registration is here accomplished starting from tri-
angulated meshes, and finding points’ correspondences us-
ing an alternate representation calledspin image. Then,
a rigid transformation is estimated using such correspon-
dences and an ICP variant is used to refine the registration.

Another approach to the fusion of multiple range images
consists in the use of thelevel settheory. This is a statisti-
cal approach which maximize the posterior probability of a
surface. In [27], this approach is utilized to reconstruct an
indoor scene, mainly based on the segmentation and regis-
tration of planar surfaces. Baillard at al. [5] use the level set

theory in cooperation with 3D registration to automatically
segment a volumetric brain image.

Other works deal with registration of range images using
surface models, mesh representations alignment, and volu-
metric approaches [20, 11, 26, 7, 12] using methods closer
to the computer graphics.

Several other work deals with the possibility to register
more range images by incrementing pairwise registration,
or assuming available all the views performing global reg-
istration in one step [6, 3, 1, 23, 24, 19, 15].

An interesting approach, alternative to the proposed
method, consists in segmenting and modeling the individ-
ual range images, and then, try to align the segmented re-
gions characterized by the same parametric surface. In [14],
an efficient yet accurate and robust algorithm for range im-
age segmentation and modeling is proposed. In short, the
algorithm is subdivided in two main steps. The first one is
essentially a region growing method in which superquadrics
are used as fitting surfaces, and the second one is a model
selection phase in which insignificant models are discarded
on the basis of an objective function suitably devised. The
generality of superquadrics and the simultaneous segmenta-
tion and model estimation make this method interesting to
be tested also in our case.

All these works assume range images from a laser range
finder looking at a single, albeit complex, object. Unlike
these ones, the proposed algorithm should deal with clut-
tered, uncertain, noisy, and low resolution data, in which
problems of filtering and segmentation should be all con-
sidered in order to get a reliable reconstruction of the scene.
Although these problems are also quoted as critical in other
papers, the fact that they typically operate in aerial environ-
ments using laser range finders, makes the above assump-
tions much less critical than in our case.

Moreover, previous papers do not consider too much a
pre-alignment phase, i.e., they assume range views quite
close or not affecting the registration. In [4] the alignment
is addressed by using the Principal Component Analysis
(PCA), but the problem is backed up by a few sentences.
A similar approach to the alignment of couple of range im-
ages is proposed in [22]. The problem is here the registra-
tion of archeological ceramic fragments, derived from a ro-
tationally symmetric object, for purposes of reconstruction
and classification of the original object. The idea is simple,
acquire the front and back 3-D views of the fragment and
align them using the (same) axis of symmetry. Axes are
estimated using 3-D Hough transform under the hypothesis
that all surface normals intersect in points belonging to the
axis. This approach is interesting due to the inherent ro-
bustness of Hough-based technique, but the relative optimal
conditions of the application (fixed object, no clutters, high
resolution data) make questionable the applicability of this
method in our case.



Our work deals with the pre-alignment problem propos-
ing a robust yet simple procedure for closing the poses of
the two range images. Three-dimensional skeletons are es-
timated from both images and matched each other in order
to find a good alignment between the two views. A point set
contraction algorithm [16] is used to extract 3D skeletons.

This approach is quite robust as overlapping object parts
can be safely matched so that the rotation matrix and the
translation vectors can be estimated and the views can be
correctly aligned prior the application of ICP to accurately
register the images.

As should be more clear now, this case is quite different
from the registration of a couple or more range images, pro-
posed in many previous papers [2, 6, 28] as the operative
conditions are different. Actually, resolution is never better
than some centimeters, sensor position is unavailable, and
the motion of the sensor is quite unstable, and cannot be
controlled with precision in any real case, so acquired im-
ages from a fixed position may be different due to speckle
and sensor floating. As a consequence, some previous so-
lutions based on estimation of surface parameters cannot be
taken into account due to the high uncertainty of the data.

In Sec. 2 , the proposed approach is described: 3D skele-
tons are first extracted from both images, skeleton branches
are classified, and a matching phase is finally carried out to
associate skeleton branches in in the two images so that the
rigid transformation between the views can be estimated.
Finally, pre-aligned range images are pairwise registered
using an ICP algorithm with outliers rejection [15]. Exam-
ples on real images of an underwater oil rig are presented in
Sec. 3. A comparative analysis is performed with respect to
simple ICP and PCA pre-alignment, showing the better per-
formances of the proposed algorithm. Finally, conclusions
are drawn (Sec. 4).

2. The method: ICP with pre-alignment

Input images are partial views of a tubular underwater rig
(like the one depicted in Fig. 1) taken from different points
of view.

Acoustic data points, which lie on the surface of cylin-
ders, are expressed in the mobile reference frame attached
to the sensor. The unknown rigid transformation that links
two reference frames is obtained by registering the two
views.

In their paper Besl and McKay [2] describe a general
purpose method for the registration of rigid 3-D shapes
which they refer to as the Iterative Closest Point (ICP) al-
gorithm. This approach eliminates the need to perform
any feature extraction, or to specify feature correspondence.
While the ICP algorithm is only guaranteed to converge to
a local minimum, there is no guarantee that this local mini-
mum will correspond to the actual global minimum, there-

fore a good initial guess is mandatory. In our case, pre-
alignment is obtained by matching skeletons, using the fol-
lowing procedure.

First, we extract the skeletons of the two cloud of points.
From the skeletons we obtain a three dimensional segmen-
tation of the image through which we can classify each
point as belonging to a pipe or to a joint. We extract every
pipe of the scene and calculate its orientation and centroid.
We also extract every joint location and its connected pipes.
Thanks to the match between correspondents joint and pipes
in two images we obtain a good pre-registration, sufficient
for ICP to converge. Please note that a good pre-alignment
can be found with only a single joint match (and at least two
connected pipes) and so the registration is possible also with
very small overlap between images. In summary, the main
stages of this work are skeleton extraction, segmentation,
matching and pre-alignment, and, finally, ICP registration.

It is worth noting that, although the rig structure formed
by pipes variously joined may seem a quite simple object,
this is not actually the case. In fact, if we consider con-
vex (even complex) objects, PCA can be sufficient for a
good pre-alignment. Conversely, when rig-like objects are
considered, such techniques may fail as the 3D structure
is quite complicated and may be very different in the two
views. Skeletons, instead, mimic thoroughly the 3D struc-
ture of the observed object parts and a good matching algo-
rithm can find a good pre-alignment, disregarding the non
overlapping parts.

2.1. Skeleton extraction

Skeleton extraction from two-dimensional binary and
gray-level images is a well-known topic, but this is not the
case when sets of three-dimensional (3D) points are consid-
ered. Actually, skeleton definition and extraction from a 3D
sparse image, i.e. a distribution of points inR3 is still a
challenging field of investigation. To the best of our knowl-
edge, a few works address the problems of skeleton extrac-
tion from range images, i.e., from a set of points distributed
on a surface in 3D space rather than points distributed in 3D
volumes. For instance, a method using a discrete subdivi-
sion of 3D space in regular cells and the approximation of
range data by two-dimensional patches is developed to ex-
tract axes of symmetry [21] in order to get skeletons from
range data. Similar techniques operating on a voxel space:
an algorithm to extract skeletons via a thinning algorithm
is presented in [18]. In our technique [16], the set of 3D
points is iteratively contracted up to form a thin distribution
that can be assimilated to a skeleton .

Let us define askeletonas a distribution of 3D points that
1) must be thinner than the original one, 2) must be located
in the neighbors of the median lines of the original point
set, 3) must have the samehomotopy group(for example, a



torus must have as a skeleton a circle, while a bitorus must
have two circles connected at a point of their perimeter) and
4) have to be invariant to 3D rotation. LetX be a 3D image,
i.e., the set of points inR3,

X = xi i = 1, ..., N

wherex = (xx, xy, xz).
We also define for every pointi and everyR ∈ R+ (ray

of a sphere about the pointi) the subsetOR
i of X and the

3D pointyR
i defined in the following way:

OR
i ≡ {xj ∈ R : |xj − xi| < R}

yR
i ≡

∑
xj∈OR

i
xj

dim{OR
i }

where dim{OR
i } is the cardinality ofOR

i (i.e., yR
i is the

centroid ofOR
i ).

Defining the following image transformation:

X −→ XR = {yR
i } (1)

and indicating with the symbolXR,n the iterative applica-
tion of it for n times, our skeleton extraction is simply the
construction of the imageXR,n for a suitable choice ofR
andn. The overall effect of this transformation is to shift
points on the border toward the center, while leaving un-
altered the points well inside an object. The iterative ap-
plication of such transformation shifts all the points of the
distribution towards its skeleton. More details can be found
in [16].
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Figure 2. Skeleton extracted from the data
cloud of Experiment 1

2.2. Segmentation

In order to match the two views we need to extract the
pipes in each view and to group pipes belonging to the same
joint.

2.2.1 Pipe extraction

In our images, we are interested classifying between points
belonging to a single pipe, and points belonging to the in-
tersection of two or more pipes (joints). Skeleton points
belonging to a pipe segment are very close to the pipe axis
and so they lie on a straight line. For each point we consider
all its neighbors in a spherical region: if all of them belong
to an approximately straight segment, the point is classified
as a pipe, otherwise it is a joint. On the points recognized as
belonging to the skeleton of a pipe, a Least Squares straight
line is fitted, representing the pipe axis.

2.2.2 Joint extraction

In general, the axis of pipes belonging to a joint will not
intersect exactly in one point or may not intersect at all. In
order to extract a joint we calculate an approximate inter-
section of the pipes with the following simple algorithm:
for every axes pairi, we compute the midpointmi of the
unique segment that connect the two lines defined by the
axes and that is perpendicular to both of them. If the num-
ber of axes isn, the number of possible pairs isn(n−1)/2.
We define the center of the joint as the center of mass of
these midpoints, i.e.:

n(n−1)/2∑

i=1

mi

n(n− 1)/2
(2)

Since we consider theline containing the axis, we retain
only intersections that are close enough too the axis end-
points.

When there are more than one joint in the scene, it is nec-
essary to preliminary subdivide the set of extracted pipes in
subsets containing pipes that belong to the same joint. To do
this, it is sufficient to group pipes whose distance, defined
as the distance between the lines passing through the axis,
is below a threshold that depends on the radius of the pipes.
The pipes grouping is carried out symbolically, building the
incidence graphof the pipes, i.e. a graph whose nodes are
the pipes and in which two nodes are connected by an arc
if the distance between the corresponding pipes is below a
given threshold. The search for the joints corresponds to
the search of the maximal complete subgraphs of the inci-
dence graph, i.e., subgraphs that are complete and that are
not contained in any larger complete subgraph. Two maxi-
mal subgraphs can have no more than one node in common
(corresponding to the pipe that connect two distinct joints).
The algorithm can be summarized as follows:

1. start with the graphG of ordern (the total number of
pipes) and with an empty list of joints;

2. whilen > 1 repeat the following steps:



3. search for a complete subgraph ofG of ordern that is
not contained in a subgraph of the list of joints.

4. if the latter exists, add it to the list of joints.
Otherwise decrementn.

A complete subgraph of order three may not represent a real
joint, but a triangle formed by three pipes. This a degenerate
case which is easily handled. It is sufficient to calculate
the three midpointsmi defined above for the three pairs
of pipes and discard those for which the distance is greater
than a threshold.

2.3. Matching

The matching phase is performed by associating both
joints and pipes of one image with joints and pipes in the
second image.

First we have to identify the same joint in the two im-
ages. A joint withn pipes (n > 3) is completely identi-
fied (for the affine geometrical properties) by the list of the
n(n − 1)/2 angles between all the pipes; it therefore suffi-
cient to build such a list for the data image and to compare it
with the analogous lists for the model image. Unfortunately,
some pipes may be missing in one of the two images, there-
fore, such a comparison will be done also with all the sub-
joints of dimensionn. The output is a list of model joints or
sub-joints that could be matched with the joints in the data
image. The procedure is repeated by exchanging the role of
data and model and the list is updated.

The second task is the matching of the pipes belonging
to the same joint: for every model joint contained the above
list one has to find a one to one correspondence between its
pipes and the ones of a data joint. To each match a cost is
associated which takes into account the differences in the
matching angles and, possibly, the number of unmatched
pipes. Since the objects we are dealing with are quite sim-
ple, an exhaustive method is feasible, consisting in trying
all the possible matches and choosing the one with the min-
imum cost.

2.4. Registration

In order to align two 3D views it is sufficient to compute
a rigid transformation (translationT and 3D rotationR).
One image is calledmodel-imageand the other is called
data-image. In our work, pairwise registration is achieved
in two stages:(i) skeleton-based pre-alignment, in which
a direct alignment between the joints of the two images is
made;(ii) fine registration with ICP, where, starting from a
couple of very close images, the registration is refined using
a variation of the classic ICP algorithm .

2.4.1 Pre-alignment

After the matching phase the pre-alignment is simply a mat-
ter of computing the rigid transformation. The translation
T is obtained by subtracting the model-joint position to the
data-joint position. The 3D rotationR is obtained by rotat-
ing the data-joint in such a way to align two pipes of it with
the two matching pipes of the model. Letv1 andv2 be the
versors giving the direction of two pipes in the data set and
w1 andw2 be the corresponding versors in the model set.
Let r1 = v1 ∧ v2 andr2 = w1 ∧ w2. If r1 andr2 are not
already aligned, the rotation that brings the plane spanned
by v1 andv2 in the plane spannedw1 andw2 is given by

R1(r1 ∧ r2, acos(r1 · r2))

where the first parameter is the rotation axis and the second
is the rotation angle. Letv′1 = R1v1 andr′1 = R1r1, then
the rotation

R2(r′1, acos(v′1 ·w1))
eventually align the axis. The total rotation isR = R2R1.

2.4.2 The ICP algorithm

The ICP algorithm is based on on the search of pairs of
nearest points in the two sets, and estimating the rigid trans-
formation which align them, assuming that the point corre-
spondence provided by sets of closest points is a reasonable
approximation to the true point correspondence. Then, the
rigid transformation is applied to the points of one set, and
the procedure is iterated until convergence.

Modifications to the original ICP are now widely used to
achieve accurate registration of pairs ofpartially overlap-
ping range images [28, 26, 25]. We implemented a variation
similar to the one proposed by Zhang [28], using a thresh-
olding based on robust statistics to limit the maximum dis-
tance between closest points [15]. As pointed out by Zhang,
the distribution of the residuals for two fully overlapping
sets approximates a Gaussian, when the registration is good.
Non-overlapped points skew the distribution of the residu-
als, hence the threshold on the distance must be set using a
robust statistics.

Following the X84 rule [9] we discard those points
whose residual differ more than5.2 MAD (Median Ab-
solute Deviations) from the median. The value5.2 cor-
responds to about3.5 standard deviations, which encloses
more than 99.9% of a Gaussian distribution.

Please note that, having matched pipes of the data with
pipes of the model, only points belonging to matching pipes
are given in input to ICP.

3. Experimental Results

Our technique have been tested with both synthetic and
real images of an offshore rig acquired with the Echoscope
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Figure 3. Experiment 1: registration with skeletons pre-alignment.

acoustical camera. Only the results of the latter are reported
here, for reasons of space.

We compared our skeleton-based pre-alignment with
the well-knownPrincipal Component Analysis(PCA) pre-
alignment, consisting in aligning the centroids and the prin-
cipal axes (ordered by the magnitude of the eigenvalues) of
the two distribution of points.

When the two clouds of points are very similar the PCA
alignment is sufficient to make ICP converge. As soon as
new parts become visible in the second view, the princi-
pal axes are skewed by the non-overlapping parts, and PCA
alignment fails, like in both the experiments reported here.

Figure 3 shows a registration using ICP with skeletons
pre-alignment.1

The final registration is visually good, indeed the aver-
age distance between closest points is about 7 cm (sensor
resolution is about 3cm). This means that ICP converged to
the global minimum.

Algorithm Average distance (mm) Iterations
Initial Final

ICP 2288.82 217.305 55
P.C. + ICP 761.169 175.386 51

Skeletons + ICP 466.32 71.8153 48

Table 1. Experiment 1: comparison of average
closest points distance and ICP iterations.

Figure 4 shows the results of plain ICP and PCA regis-

1In the original color pictures, the two clouds of points are more distin-
guishable, being blue and red. Please refer to the electronic proceedings.

Algorithm Average distance (mm) Iterations
Initial Final

ICP 3521.93 859.011 53
P.C. + ICP 452.149 237.106 55

Skeletons + ICP 980.336 67.848 54

Table 2. Experiment 2: comparison of average
closest points distance and ICP iterations.

tration on the same clouds of points. The first fails, as one
might expect, because the two cloud of points are too much
displaced. PCA fails because the data cloud have one pipe
that the model does not have, and this causes the principal
axes to be different. The figures in Table 1 confirm that ICP
got stuck into a local minimum in both cases.

Finally, Fig. 5 shows another example of successful reg-
istration using skeletons pre-alignment where PCA fails
(not shown here) because a large part of the second view
is not visible in the first. By analyzing the figures in Table
2 one may note that the initial average distance for PCA is
lower that for skeletons, yet ICP converged to a local mini-
mum when started from the PCA alignment. This reminds
us that a good alignment is not necessarily the one with the
smallest average closest points distances, because the clos-
est points may be wrong in the first ICP iteration.

4. Conclusions

In this paper we tackled the problem of registering two
clouds of points with large non-overlapping parts and gen-
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Figure 4. Experiment 1: comparison with other techniques

eral starting pose. Driven by an underwater application, we
considered objects composed by pipes and we demonstrated
that 3D skeletons can be successfully used to obtain a coarse
alignment sufficient to make ICP converge.

Moreover, thanks to the skeletons matching, we feed the
final ICP only with the matching sub-set of the data-image,
thereby alleviating the outliers conditioning.

Preliminary results are satisfactory, since as soon as the
skeletons are correctly matched, the ICP always converges
to the global minimum. Future work will address the im-
provement of the skeletons matching, by making it more
efficient and reliable.
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