
AUTOMATIC CAMERA ORIENTATION AND STRUCTURE RECOVERY WITH
SAMANTHA

R. Gherardi, R. Toldo, V. Garro, A. Fusiello

Dipartimento di Informatica, Università di Verona
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ABSTRACT:

SAMANTHA is a software capable of computing camera orientation and structure recovery from a sparse block of casual images without
human intervention. It can process both calibrated images or uncalibrated, in which case an autocalibration routine is run. Pictures
are organized into a hierarchical tree which has single images as leaves and partial reconstructions as internal nodes. The method
proceeds bottom up until it reaches the root node, corresponding to the final result. This framework is one order of magnitude faster
than sequential approaches, inherently parallel, less sensitive to the error accumulation causing drift. We have verified the quality of
our reconstructions both qualitatively producing compelling point clouds and quantitatively, comparing them with laser scans serving
as ground truth.

1 INTRODUCTION

Three dimensional (3D) content is pervasive in most forms of dig-
ital media, feeding the need for ubiquitous, effortless acquisition
of 3D models. In this article we describe SAMANTHA, an auto-
matic, robust software that can compute camera orientation and
scene structure from a sparse block of casual (unconstrained) dig-
ital images. Picture datasets are easy to capture, process and up-
date. They have better resolution, contrast, definition of the video
that can be produced with equally priced equipment. Pictures
have also inferior requirements for storage and globally lower
costs for production, maintenance and processing. Images are
therefore the preferred way for ubiquitous, low cost acquisition
of quality 3D data.

In Computer Vision the problem of recovering camera (exter-
nal) orientation and scene 3D structure from images is known
as Structure and Motion. If the internal orientation is unknown
it must be computed as well and the problem becomes uncali-
brated.

Relevant literature comprises several Structure and Motion (SaM)
pipelines that process images in batch and handle the reconstruc-
tion process making no assumptions on the imaged scene and
on the acquisition rig (Brown and Lowe, 2005, Kamberov et al.,
2006, Snavely et al., 2006, Vergauwen and Gool, 2006, Irschara
et al., 2007).

The main issue to be solved in this context is the scalability of
the SaM pipeline. This prompted a quest for efficiency that has
explored several different solutions: the most successful have
been those aimed at reducing the impact of the bundle adjustment
phase, which – with feature extraction – dominates the computa-
tional complexity.

A class of solutions that have been proposed are the so-called
partitioning methods (Fitzgibbon and Zisserman, 1998). They
reduce the reconstruction problem into smaller and better con-
ditioned subproblems which can be effectively optimized. The
subproblems can be selected analytically as in (Steedly et al.,
2003), where spectral partitioning has been applied to SaM, or
they can emerge from the underlying 3D structure of the prob-
lem, as described in (Ni et al., 2007). The computational gain of

such methods is obtained by limiting the combinatorial explosion
of the algorithm complexity as the number of images and feature
points increases.

A second strategy is to select a subset of the input images and fea-
ture points that subsumes the entire solution. Hierarchical sub-
sampling was pioneered by (Fitzgibbon and Zisserman, 1998),
using a balanced tree of trifocal tensors over a video sequence.
The approach was subsequently refined by (Nistér, 2000), adding
heuristics for redundant frames suppression and tensor triplet se-
lection. In (Shum et al., 1999) the sequence is divided into seg-
ments, which are resolved locally. They are subsequently merged
hierarchically, eventually using a representative subset of the seg-
ment frames. A similar approach is followed in (Gibson et al.,
2002), focusing on obtaining a well behaved segment subdivi-
sion and on the robustness of the following merging step. The
advantage of these methods over their sequential counterparts
lays in the fact that they improve error distribution on the entire
dataset and bridge over degenerate configurations. Anyhow, they
work for video sequences, so they cannot be applied to unordered,
sparse images.

A recent paper (Snavely et al., 2006) that works with sparse data-
sets describes a way to select a subset of images whose recon-
struction provably approximates the one obtained using the entire
set. This considerably lowers the computational requirements by
controllably removing redundancy from the dataset. Even in this
case, however, the images selected are processed incrementally.
Moreover, this method does not avoid computing the epipolar ge-
ometry between all pairs of images.

A third solution is covered in literature, orthogonal to the afore-
mentioned approaches. In (Agarwal et al., 2009), the computa-
tional complexity of the reconstruction is tackled by throwing ad-
ditional computational power to the problem. Within such frame-
work, the former algorithmical challenges are substituted by load
balancing and subdivision of reconstruction tasks. Such direc-
tion of research strongly suggest that the current monolithical
pipelines should be modified to accommodate ways to parallelize
and optimally split the workflow of reconstruction tasks.

Our proposal is a hierarchical and parallelizable scheme for SaM.
The images are organized into a hierarchical cluster tree, the re-



construction proceeding from leaves to the root. Partial recon-
structions correspond to internal nodes, whereas images are stored
in the leaves (see Fig. 1). This scheme provably cuts the compu-
tational complexity by one order of magnitude (provided that the
dendrogram is well balanced) and achieves scalability by parti-
tioning the problem into smaller instances and combining them
hierarchically in a inherently parallelizable way. It is also less
sensible to typical problems of sequential approaches, namely
sensitivity to initialization (Thormählen et al., 2004) and drift
(Cornelis et al., 2008). This approach has some analogy with
(Schaffalitzky and Zisserman, 2002), where a spanning tree is
built to establish in which order the images must be processed.
After that, however, the images are processed in a standard incre-
mental way.

Figure 1: An example of dendrogram for a 6 views set.

Most existing pipelines either assumes known internal parame-
ters (Brown and Lowe, 2005, Irschara et al., 2007), or constant
internal parameters (Vergauwen and Gool, 2006, Kamberov et al.,
2006), or relies on EXIF data plus external informations (camera
CCD dimensions) (Snavely et al., 2006). Another unique fea-
ture of SAMANTHA is the capability of dealing with uncalibrated
images with varying internal parameters and no ancillary infor-
mation, as it leverages on a a novel auto-calibration procedure
robust enough to be applied in a real context.

The remainder of this article is organized as follows. The next
section outlines the matching stage, then Sec. 3 describes the way
the hierarchical cluster tree is built. Section 4 presents the hier-
archical approach to structure and motion recovery, whereas the
autocalibration strategy is explained in Sec. 5. We will then de-
scribe the online image orientation stage in Sec. 6. Experimental
detailed in Sec. 7, and finally conclusions are drawn in Sec. 8.

2 KEYPOINT MATCHING

In this section we describe the stage of SAMANTHA that is de-
voted to the automatic extraction and matching of keypoints among
all the n available images. Its output is to be fed into the geomet-
ric stage, that will perform the actual reconstruction.

The objective is to identify in a computationally efficient way im-
ages that potentially share a good number of keypoints, instead
of trying to match keypoints between every image pair (they are
O(n2)). We follow the approach of (Brown and Lowe, 2003).
SIFT (Lowe, 2004) keypoints are extracted in all n images. In
this culling phase we consider only a constant number of descrip-
tors in each image (300 in our experiments, where a typical image
contains thousands of SIFT keypoints). Then, each keypoint de-
scription is matched to its � nearest neighbors in feature space
(we use � = 8). This can be done in O(n log n) time by using a
k-d tree to find approximate nearest neighbors (we used the ANN
library (Mount and Arya, 1996)). A 2D histogram is then built
that registers in each bin the number of matches between the cor-
responding views. Every image will be matched only to the m
images that have the greatest number of keypoints matches with

it (we use m = 8). Hence, the number of images to match is
O(n), being m constant.

Matching follows a nearest neighbor approach (Lowe, 2004), with
rejection of those keypoints for which the ratio of the nearest
neighbor distance to the second nearest neighbor distance is greater
than a threshold (set to 1.5 in our experiments).

Homographies and fundamental matrices between pairs of match-
ing images are then computed using MSAC (Torr and Zisserman,
2000). Let ei be the residuals after MSAC, the final set of inliers
are those points such that

|ei −medj ej | < 3.5σ∗, (1)

where σ∗ is a robust estimator of the scale of the noise:

σ∗ = 1.4826medi |ei −medj ej |. (2)

This outlier rejection rule is called X84 in (Hampel et al., 1986).

The model parameters are eventually re-estimated on this set of
inliers via least-squares minimization of the (first-order approxi-
mation of the) geometric error (Luong and Faugeras, 1996, Chum
et al., 2005).

The more likely model (homography or fundamental matrix) is
selected according to the Geometric Robust Information Criterion
(GRIC) (Torr, 1997). Finally, if the number of remaining matches
between two images is less than a threshold (computed basing on
a statistical test as in (Brown and Lowe, 2003)) then they are
discarded.

Keypoints matching in multiple images are connected into tracks,
rejecting as inconsistent those tracks in which more than one key-
point converges (Snavely et al., 2006) and those shorter than three
frames.

3 VIEWS CLUSTERING

The second stage of SAMANTHA consists in organizing the avail-
able views into a hierarchical cluster structure that will guide the
reconstruction process.

Algorithms for image views clustering have been proposed in lit-
erature in the context of reconstruction (Schaffalitzky and Zis-
serman, 2002), panoramas (Brown and Lowe, 2003), image min-
ing (Quack et al., 2008) and scene summarization (Simon et al.,
2007). The distance being used and the clustering algorithm are
application-specific.

The method starts from an affinity matrix among views, com-
puted using the following measure, that takes into account the
number of common keypoints and how well they are spread over
the images:

ai,j =
1
2
|Si ∩ Sj |
|Si ∪ Sj |

+
1
2

CH(Si) + CH(Sj)
Ai + Aj

(3)

where Si and Sj are the set of matching keypoints in image Ii

and Ij respectively, CH(·) is the area of the convex hull of a set
of points and Ai (Aj) is the total area of the image. Figure 2
shows an example of the neighborhood defined by this affinity.

Views are grouped together by agglomerative clustering, which
produces a hierarchical, binary cluster tree, called dendrogram.
The general agglomerative clustering algorithm proceeds in a bottom-
up manner: starting from all singletons, each sweep of the algo-
rithm merges the two clusters with the smallest distance. The



Figure 2: An example of one image (top left) from “Piazza Bra”
and its five closest neighbors according to the affinity defined in
Eq. 3.

way the distance between clusters is computed produces differ-
ent flavors of the algorithm, namely the simple linkage, complete
linkage and average linkage (Duda and Hart, 1973). We selected
the simple linkage rule: the distance between two clusters is de-
termined by the distance of the two closest objects (nearest neigh-
bors) in the different clusters.

Simple linkage clustering is appropriate to our case because: i)
the clustering problem per se is fairly simple, ii) nearest neigh-
bors information is readily available with ANN and iii) it pro-
duces “elongated” or “stringy” clusters which fits very well with
the typical spatial arrangement of images sweeping a certain area
or a building.

This procedure allows to decrease the computational complexity
with respect to a sequential SaM pipeline, from O(n5) to O(n4)
in the best case (see (Gherardi et al., 2010) for a complete proof),
i.e. when the tree is well balanced (n is the number of views).
If the tree is unbalanced this computational gain vanishes. It is
therefore crucial to enforce the balancing of the tree and this is
the goal of the technique that we shall describe in this section.

In order to produce better balanced trees and approximate best-
case complexity, we modify the agglomerative clustering strategy
as follows: starting from all singletons, each sweep of the algo-
rithm merges the pair with the smallest cardinality among the �
closest pair of clusters. The distance is computed according to
the simple linkage rule. The cardinality of a pair is the sum of the
cardinality of the two clusters.

In this way we are softening the “closest first” agglomerative cri-
terion by introducing a competing “smallest first” principle that
tends to produce better balanced dendrograms. The amount of
balancing is regulated by the parameter �: when � = 1 this is
the standard agglomerative clustering with no balancing; when
� ≥ n/2 (n is the number of views) a perfect balanced tree is
obtained, but the clustering is poor, since distance is largely dis-
regarded. We found in our experiments (see Sec. 7) that a good
compromise is � = 5. An example is shown in 3. The height of
the tree is reduced from 14 to 9 and more initial pairs are present
in the dendrogram on the right. Computational complexity de-
crease accordingly.

Extra care must be taken when building clusters of cardinality
two. These are pair of images from which the reconstruction will
start, hence pairs related by homographies should be avoided.
This is tantamount to say that the fundamental model must ex-
plain the data far better than an homography, and this can be im-
plemented by considering the GRIC, as in (Pollefeys et al., 2002).
We therefore modify the linkage strategy so that two views i and
view j are allowed to merge in a cluster only if:

gric(Fi,j) < α gric(Hi,j) with α ≥ 1, (4)

where gric(Fi,j) and gric(Hi,j) are the GRIC scores obtained by
the fundamental matrix and the homography matrix respectively
(we used α = 1.2). If the test fail, consider the second closest
elements and repeat.

4 HIERARCHICAL STRUCTURE AND MOTION

The dendrogram produced by the clustering stage imposes a hier-
archical organization of the views that will be followed by SAMAN-
THA. At every node in the dendrogram an action must be taken,
that augment the reconstruction (cameras + 3D points): a two
views reconstruction is per/-for/-med when a cluster is first cre-
ated, then there can be the addition of a single view to an existing
cluster or the merging of two clusters. The first two are the typical
operations of a sequential pipeline, whereas the latter is unique to
the hierarchical pipeline.

Each node is upgraded, as soon as possible, possible, to a Eu-
clidean frame. If cameras are calibrated (internal orientation is
known) then the Euclidean frame is available from start. If not,
autocalibration is run on nodes with a minimum of m views,
where m depends on the conditions (for example, autocalibra-
tion with known skew and aspect ratio requires a minimum of 4
views to obtain a unambiguous solution).

4.1 Two-views reconstruction.

The reconstruction from two views proceeds from the fundamen-
tal matrix. It is well known that the following two camera matri-
ces:

P1 = [I | 0] and P2 = [[e2]×F | e2], (5)

yield the fundamental matrix F , as can be easily verified.

This canonical pair is related to the correct one (up to a similarity)
by a projectivity H of 3D space. Section 5 will describe how to
guess a matrix H that provides a well conditioned starting point
for the subsequent autocalibration step.

Given the upgraded versions of the perspective projection matri-
ces P1H and P2H , the position in space of the 3D points is then
obtained by triangulation (Sec. 4.1.1) and bundle adjustment is
run to improve the reconstruction.

4.1.1 Triangulation. Triangulation (or intersection) is performed
by the iterated linear LS method (Hartley and Sturm, 1997). Points
are pruned by analyzing the condition number of the linear sys-
tem and the reprojection error. The first test discards ill-conditioned
3D points, using a threshold on the condition number of the lin-
ear system (104, in our experiments). The second test applies the
so-called X84 rule (Hampel et al., 1986), that establishes that, if
ei are the residuals, the inliers are those points such that

|ei −medj ej | < 5.2medi |ei −medj ej |. (6)

4.2 One-view addition.

The reconstructed 3D points that are visible in the view to be
added provides a set of 3D-2D correspondences, that are exploited
to glue the view to the cluster. This can be done by resection with
DLT (Hartley and Zisserman, 2003), using MSAC (Torr and Zis-
serman, 2000) to cope with outliers. The view that has been glued
might have brought in some new tracks, that are triangulated as
described before (Sec. 4.1.1). Finally, bundle adjustment is run
on the current reconstruction.
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Figure 3: Two dendrograms produced on a 52-views set. The left one was produced using the standard simple linkage rule, the right
using the modified rule, with � = 5.

4.3 Clusters merging.

When two clusters merge the respective reconstructions live in
two different reference systems, that are related by a a projectiv-
ity of the space (which is a similarity when both are properly cal-
ibrated). The points that they have in common are the tie points
that serve to the purpose of computing the unknown transforma-
tion, using MSAC to discard wrong matches. An homography of
the projective space is sought that brings the second onto the first,
thereby obtaining the correct basis for the second. Once the cam-
eras are registered, the common 3D points are re-computed by
triangulation (Sec. 4.1.1), and the tracks obtained after the merg-
ing as well. The new reconstruction is eventually refined with
bundle adjustment.

5 AUTOCALIBRATION

SAMANTHA strive to enforce Euclidean structure inside each node
of the tree. This is of course not always possible, in particular (in
the uncalibrated case) for nodes at the lowest level of the hier-
archy, composed by a low number of views. For these nodes, a
quasi-Euclidean upgrade will suffice until the minimum number
of views or a unambiguous configuration is reached.

Our approach (Gherardi and Fusiello, 2010) is based on a novel
method for the estimation of the plane at infinity given an esti-
mate for the internal parameters of at least two cameras. Equipped
with such procedure, we can then explore exhaustively the space
of valid calibration parameters (which is naturally bounded be-
cause of the finiteness of acquisition devices) while looking for
the best rectifying homography.

The canonical pair of camera matrices

P1 = [I | 0] and P2 = [Q2 | e2], (7)

is related to the Euclidean one by a projectivity H of 3D space
that has the following structure:

H =

»
K1 0
v� 1

–
. (8)

Given reasonable assumptions on internal parameters of the cam-
eras K1 and K2, the upgraded, metric versions of the perspective
projection matrices are equal to:

P E
1 = [K1 | 0] � P1H (9)

P E
2 = K2 [R2|t2] � P2H =

h
Q2K1 + e2v

�|e2

i
(10)

The rotation R2 can therefore be equated to the following:

R2 � K−1
2

“
Q2K1 + e2v

�
”

= K−1
2 Q2K1 + t2v

� (11)

in which it is expressed as the sum of a 3 by 3 matrix and a rank
1 term. Let R∗ be the rotation such that: R∗t2 = [�t2� 0 0]� .
Left multiplying it to Eq. 11 yields:

R∗R2 �

Wz }| {
R∗ K−1

2 Q2K1 + [�t2� 0 0]� v� (12)

Calling the first term W and its rows w�
i , we arrive at the fol-

lowing:

R∗ R2 =

2

4
w1

� + �t2�v�
w2

�

w3
�

3

5 /�w3� (13)

in which the last two rows of the right hand side are independent
from the value of v. Since the rows of the right hand side form
a orthonormal basis, we can recover the first one taking the cross
product of the other two. Vector v is therefore equal to:

v = (w2 ×w3/�w3� −w1) /�t2� (14)

With the described procedure, we can enumerate through all pos-
sible matrices of intrinsics of two cameras K1 and K2 checking
for the best upgrading homography, which can finally be refined
through non-linear optimization.

In order to sample the space of calibration parameters we can
safely assume, as customary, null skew and unit aspect ratio: this
leaves the focal length and the principal point location as free
parameters. However, as expected, the value of the plane at in-
finity is in general far more sensitive to errors in the estimation
of focal length values rather than the image center. Thus, we can
iterate just over focal lengths f1 and f2 assuming the principal
point to be centered on the image; the error introduced with this
approximation is normally well-within the radius of convergence
of the subsequent non-linear optimization. The search space is
therefore reduced to a bounded region of R2.

To score each sampled point (f1, f2), we consider the aspect ra-
tio, skew and principal point location of the resulting transformed
camera matrices and aggregate their respective value into a single
cost function:

{f1, f2} = arg min
f1,f2

nX

�=2

C2(K�) (15)



where K� is the intrinsic parameters matrix of the �-th camera
after the Euclidean upgrade determined by (f1, f2), and

C(K) =

skewz }| {
wsk|k1,2|+

aspect ratio
z }| {
war|k1,1 − k2,2|+

principal point
z }| {
wuo |k1,3| + wvo |k2,3|

(16)
where ki,j denotes the entry (i, j) of K and w are suitable weights,
computed as in (Pollefeys et al., 2002). The first term of (16)
takes into account the skew, which is expected to be 0, the second
one penalizes cameras with aspect ratio different from 1 and the
last two weigh down cameras where the principal point is away
from the image centre.

6 ON-LINE IMAGE ORIENTATION

The reconstruction procedure described above works in batch,
meaning that SAMANTHA needs to have access to all the images
at the same time. An interesting problem that is directly linked
to self-localization in a known environment (Garro and Fusiello,
2010) is that of orienting a new image of the scene previously
reconstructed. In order to compute features correspondences be-
tween the new image and the set of 3D points all the information
acquired, namely the cameras network and the set of SIFT de-
scriptors related to each 3D point, is exploited. First the most
similar images to the current one are retrieved, then a subset of
3D points visible in these images is identified, and finally 2D -
3D correspondences are established.

6.1 Offline data pre-processing.

In order to support efficient on-line retrieval of the images, a Bag-
of-Words (BoW) indexing scheme is implemented off-line (as in
(Sivic and Zisserman, 2003)).

The first step is the codebook construction, which consists in
clustering the descriptors associated to the 3D points and iden-
tifying the clusters centres as visual words. Two examples of effi-
cient and scalable clustering techniques are vocabulary tree (Nis-
ter and Stewenius, 2006), that uses hierarchical k-means to recur-
sively subdivide the feature space, and random forests (Philbin et
al., 2007).

The second step computes a compact representation or signature
of each image as the histogram of occurrences of visual word in
the image. As customary (Sivic and Zisserman, 2003), a term
frequency - inverse document frequency (TF-IDF) weighting is
applied to these signatures. This weighting scheme, typically em-
ployed in text retrieval, considers visual words frequencies both
in a single image and in the entire database. Indeed some visual
words can be less distinctive due to a high frequency of appear-
ance in the entire image database, and these items must be down-
weighted; on the other hand, visual words appearing only in few
images have a high distinctive power and should be up-weight.

6.2 Online image orientation.

In the online phase, the system first exploits the BoW indexing
to retrieve the images most similar to the current one. SIFT key-
points are extracted from this image then each feature is assigned
to a visual word of the codebook (using a data structure that sup-
port efficient neighborhood query, like kd-trees) and its related
BoW signature is computed. Then the similarity between query
and database images is computed using the cosine measure. A
subset D̃ of m most similar images is therefore determined.

The second step consists in selecting the SIFT features associ-
ated to the points of the 3D model visible from the images in D̃.

As a further additional constraint, only the features attached to
3D points that are visible from more than one view are selected.
Then, a closest neighbour matching is performed between the fea-
tures extracted from the new image and the features just selected,
obtaining a set of correspondences between 2D image points and
3D model points. The exterior orientation of the camera can now
be computed by a linear algorithm, either (Fiore, 2001) if the in-
trinsic parameter are known, or resection (Hartley and Zisserman,
2003) in the case of uncalibrated camera. MSAC is used to cope
with outliers. A further non-linear refinement of camera orienta-
tion can be done by minimizing the reprojection error of the set
of 3D points inliers.

We tested the performance of the online camera orientation on the
“Piazza Br” set with a leave-one-out experiment. Each registered
camera has been first removed from the dataset together with the
related feature descriptors and then the localization algorithm has
been run on the updated dataset. The original orientation of the
camera computed by SAMANTHA is taken as ground truth.

In Tab. 1 the accuracy of our orientation algorithm is shown in
terms of Euclidean distance of the camera centre with respect to
the ground truth data and the residual rotation angle.

Method Camera Centre Residual Rotation
Distance [m] Angle [deg]

Fiore 0.2509 0.56
Resection 3.0101 4.03
Fiore + refin 0.1270 0.29
Resection + refin 3.0022 4.00

Table 1: Camera orientation average error

7 RESULTS

We run SAMANTHA on the datasets provided by the workshop’s
organizers. On the “Campidoglio”, “Piazza Navona” and “Park
Guell” sets the results were clearly incorrect, maybe because of
a misunderstanding of the calibration model. On the other nine
datasets SAMANTHA produced good results. “Piazza Erbe” and
“Piazza Dante” were processed at half resolution because this re-
sults were already available and we did not have enough time to
run new experiments. “St Jean Fountain” were processed at half
resolution in order to reduce the computational load. All sets but
“St Jean Fountain” were calibrated, so radial distortion had been
removed beforehand and internal parameters were given as input.
“St Jean Fountain”, instead, did not have calibration parameters
available: it has been processed by SAMANTHA using its auto-
calibration feature, without taking the available EXIF data into
account. Table 2 summarizes the results:

Figures 4 - 9 illustrate the results.

Computation times are not available, because we run the experi-
ments on different computers, and the code is a mixture of C++
and Matlab. However it has been already proved analytically and
empirically (Farenzena et al., 2009, Gherardi et al., 2010) that
SAMANTHA is more efficient than sequential approaches, boost-
ing the computational efficiency by one order of magnitude.

8 CONCLUSIONS

We presented SAMANTHA, a Structure and Motion pipeline that
improves on the state of the art thanks to a hierarchical scheme
based on views clustering. Our proposal is more efficient than
sequential approaches, and more general, because it is able to
process uncalibrated pictures (with no ancillary information).



Figure 4: Two views of the reconstruction of “Piazza Dante”

Figure 5: Reconstruction of “Pozzoveggiani” (left) and “Myson” (right)

Figure 6: Two views of the reconstruction of “Piazza Erbe”



Figure 7: Two views of the reconstruction of “Piazza Bra”

Figure 8: Two views of the reconstruction of “St Jean Fountain”

Figure 9: Reconstruction of “Castle-K19”, “Fountain-K6”, and “Herz-Jesu-K7”



Image set resolution images: notes
orig/oriented

Pozzoveggiani 1024x768 50/54
Piazza Dante 2288x1712 39/39 half res
Piazza Erbe 2288x1712 183/259 half res
Piazza Bra 3008x2000 217/331
Castle-K19 3072x2048 19/19
Fountain-K6 3072x2048 6/6
Herz-Jesu-K7 3072x2048 7/7
Myson 3872x2592 18/18
StJean Fount.n 6048x4032 66/66 half res

autocalibrated
Piazza Navona 4000x3000 53/92 wrong
Campidoglio 3000x4000 34/56 wrong
Parc Guell 3000x4000 38/53 wrong

Table 2: Summary of results.

Future work will be aimed at bridging the “semantic web”, mov-
ing from an unstructured cloud of points to a higher level model
that can imported in any digital content creation software. Our
first step in this direction is described in (Toldo and Fusiello,
2010).

Data and additional material are available from from
http://profs.sci.univr.it/∼fusiello/demo/samantha/.
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