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ABSTRACT:

We describe an automated pipeline for the reconstruction and rendering of three dimensional objects, with particular emphasys for
urban environments. Our system can robustly recover 3D points and cameras from uncalibrated views, without manual assistance. The
reconstructed structure is augmented by fitting geometrical primitives such as planes and cylinders to the sparse point cloud obtained.
Such information is the key to obtain a higher level understanding of the scene; we use this knowledge to efficiently render the recovered
environment, capturing its global appearance while preserving scalability. Several examples display our system in action.

1 INTRODUCTION

In this paper we describe the fully automated approach to object
reconstruction from images that we developed over the last five
years. Our integrated approach is composed by a geometric back-
end and a graphical front-end.

The former is constituted by a Structure and Motion pipeline
specifically tailored for robustness, that is able to automatically
reconstruct 3D points and cameras from uncalibrated views. The
resulting unorganized point cloud is subsequently augmented by
fitting its elements with geometrical primitives such as planes and
cylinders, gaining a higher level understanding of the scene. In
this regard, we developed a specific approach that enables data
self-organization and copes naturally with multiple structures.

The latter is a visualizer that enables both researchers and end-
users to analyze and navigate the results of the reconstruction
process. Users can jump from photo to photo in 3D, thus perceiv-
ing the relative position of the images, or they can navigate in the
virtual space, roaming freely around the point cloud and image
pyramids, similarly to the Virtual Tourism project (Snavely et al.,
2006).

Since our model is richer than a sparse unorganized point cloud,
thanks to the geometric primitives fitted to 3D data, we can offer
a third, novel visualization modality. The original pictures are
projected on the recovered surfaces, thus producing a model that
captures both the appearance and structure of the scene. This en-
riches the picture context and increases the user scene awareness.

The final system brings together previous art and novel solu-
tions in an unsupervised framework which needs relatively few
assumptions or restrictions.

The rest of this paper is organized as follows: in section two we
will review the relevant state of the art; our approach to the prob-
lem of uncalibrated reconstruction will be described in the fol-
lowing three section, dealing respectively with the structure and
motion pipeline, the high-level model fitting and the visualiza-
tion stage. Section 6 will present several experimental results;
conclusions are drawn in section 7.

2 PREVIOUS ART

Literature covers several approaches for solving the problem of
architectural/urban reconstruction: these can be categorized in
two main branches: a first one (Snavely et al., 2006, Vergauwen

and Gool, 2006, Brown and Lowe, 2005, Kamberov et al., 2006)
is composed of Structure and Motion (SaM) pipelines that are
able to handle the reconstruction process making no assumptions
on the imaged scene and without manual intervention.

These methods usually share a common structure and produce
as output, along with camera parameters, an arbitrarily dense but
ultimately unorganized point cloud which fails to model surfaces
((Goesele et al., 2007) being the notable exception).

The second category comprises the methods specifically tailored
for urban environmentsand engineered to be mounted on survey
vehicles (P. Mordohai et al., 2007, Cornelis et al., 2006). These
systems usually rely on a host of additional information, such as
GPS and inertial sensors, and output dense polygonal maps using
stereo triangulation.

Both approaches produce large amounts of data, making it diffi-
cult to store, render, analyze or disseminate the results. The most
scalable approach was shown in (Cornelis et al., 2006), devel-
oped for compact visualization on consumer navigation products.
Road ground and building façades were forced to lie on textured,
mutually-orthogonal, gravity-aligned, geo-located planes.

The recovery of the semantic structure of urban elements, in or-
der to produce simpler and more tractable models, has been tack-
led by fewer researchers. In this respect, the two most similar
articles to the work presented here are (Dick et al., 2004) and
(Schindler and Bauer, 2003). In (Dick et al., 2004) is described
a system that specializes in creating architectural models from a
limited number of images. Initially a coarse set of planes is ex-
tracted by grouping point features; the models are subsequently
refined by casting the problem in a Bayesian framework where
priors for architectural parts such as doors and windows are in-
corporated or learnt. A similar deterministic approach is devel-
oped in (Schindler and Bauer, 2003) where dominant planes are
recovered using a orthogonal linear regression scheme: façade
features, which are modeled as shaped protrusions or indenta-
tions, are then selected from a set of predefined templates. Both
methods rely on a large amount of prior knowledge to operate,
either implicitly or explicitly, and make strict assumption on the
imaged scene.

In our approach instead, the amount of injected prior knowledge
is limited to the non-critical type and number of primitives used:
the recovery process rather than being top-down is entirely data-
driven, and structure emerges from the data rather than being dic-
tated by a set of pre-determined architectural priors.



3 STRUCTURE AND MOTION PIPELINE

Given a collection of uncalibrated images of the same scene, with
constant intrinsic parameters, the SaM pipeline outputs camera
parameters, pose estimates and a sparse 3D points cloud of the
scene. Our SaM pipeline is made up of state-of-the-art algo-
rithms and follows an incremental greedy approach, similar to
(Snavely et al., 2006) and (Pollefeys et al., 2002). The most ef-
forts have been made in the direction of a robust and automatic
approach, avoiding unnecessary parameters tuning and user in-
tervention. More details are reported in (Farenzena et al., 2008b).
A sample output is shown in Fig. 1.

Figure 1: Reconstruction of the “Pozzoveggiani” dataset.

3.1 Multimatching

Initially, keypoints are extracted and matched over different im-
ages. This is accomplished using SIFT (Lowe, 2004) for detec-
tion and description of local point features. Matching follows a
nearest neighbor approach (Lowe, 2004), with rejection of those
keypoints for which the ratio of the nearest neighbor distance to
the second nearest neighbor distance is greater than 2.0.

Homographies and fundamental matrices between pairs of im-
ages are then computed using RANSAC (Fischler and Bolles,
1981). At this point we have a set of matches that are consid-
ered inliers for a certain model. However, in order to increase the
robustness of the method further, we apply the x84 (Hampel et
al., 1986) outlier rejection rule. The best-fit model (homography
or fundamental matrix) is selected according to the Geometric
Robust Information Criterion (GRIC) (Torr, 1997). The matches
from this model go through a validation gate as in (Brown and
Lowe, 2003). The idea is to compare the probabilities that this
set of inliers/outliers was generated by a correct image match or
by a false image match.

After that, keypoints matching in multiple images (at least three)
are connected into tracks, rejecting as inconsistent those tracks in
which more than one keypoint converges (Snavely et al., 2006).

The fundamental matrices so far obtained are fed into a globally
convergent autocalibration algorithm (Fusiello et al., 2004) that

recovers the intrinsic parameters K of the cameras by minimizing
the following cost function using Interval Analysis:
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X
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where Fij is the fundamental matrix between views i and j, and
Eij = K

T
FijK.

Once the intrinsic parameters are known, the position of each
view as well as the 3D location of the tracks is recovered using
an incremental approach that starts from two views. The extrin-
sic parameters of two given views is obtained by factorizing the
essential matrix, as in (Hartley, 1992). Then 3D points are recon-
structed by intersection and pruned using x84 on the reprojection
error. Bundle adjustment (BA) (Lourakis and Argyros, 2004) is
run eventually to improve the reconstruction.

The choice of these two seed views turns out to be critical (Thormählen
et al., 2004). It should be a compromise between distance of the
views and the number of keypoints in common. We require that
the matching points must be well spread in the two images, and
that the fundamental matrix must explain the data far better than
other models (namely, homography), according to the GRIC, as
in (Pollefeys et al., 2002). Therefore, we compute the following
distance measure between views:

Si,j =
CHi

Ai
+

CHj
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where CHi (CHj) is the area of the convex hull of the keypoint
in image Ii (Ij), Ai (Aj) is the total area of image Ii (Ij). Then,
among the top 20% closest views we choose the one with the
lowest gric(Fi,j)/gric(Hi,j), where gric(Fi,j) and gric(Hi,j)
are the GRIC scores obtained by the fundamental matrix and the
homography matrix respectively.

After initialization, a new view at a time is added until there are
no remaining views. The next view to be considered is the one
that contains the largest number of tracks whose 3D position has
already been estimated. This gives the maximum number of 3D-
2D correspondences, that are exploited to solve an exterior ori-
entation problem via a linear algorithm (Fiore, 2001). The algo-
rithm is used inside a RANSAC iteration, in order to cope with
outliers. The extrinsic parameters are then refined with BA.

Afterwards, the 3D structure is updated by adding new tracks, if
possible. Candidates are those tracks that have been seen in at
least one of the cameras in the current reconstruction. 3D points
are reconstructed by intersection, and successively pruned using
x84 on the reprojection error. As a further caution, 3D points
for which the intersection is ill-conditioned are discarded, using
a threshold on the condition number of the linear system.

Finally, we run BA again, including the new 3D points.

4 GEOMETRIC PRIMITIVE EXTRACTION

A widespread problem in Computer Vision is fitting a model to
noisy data: The RANSAC algorithm (Fischler and Bolles, 1981)
is the common practice for that task. It works reliably when data
contains measurements from a single structure corrupted by gross
outliers. However it has been proved to be not suited to deal
with multiple structures (Zuliani et al., 2005). Mode finding in
parameter space (Xu et al., 1990, Comaniciu and Meer, 2002),
on the other hand, copes naturally with multiple structures, but
cannot deal with high percentage of gross outliers, especially as
the number of models grows and the distribution of inliers per
model is uneven (Zhang and Kosecká, 2006). We developed a



new method for primitives extraction that overcome these prob-
lems (Toldo and Fusiello, 2008).

The method starts with random sampling: M Model hypothesis
are generated by drawing minimal sets of data points necessary to
estimate the model, called minimal sample sets (MSS). They are
constructed in a way that neighbouring points are selected with
higher probability, as suggested in (Kanazawa and Kawakami,
2004, Zuliani et al., 2005). Namely, if a point xi has already been
selected, then xj has the following probability of being drawn:

P (xj |xi) =

(
1
Z exp− ||xj−xi||2

σ2 if xj �= xi,

0 if xj = xi.
(3)

where Z is a normalization constant and σ is chosen heuristically.

The consensus set (CS) of each model, i.e. the points with a dis-
tance less than a threshold ε from the model, is then computed.
We can virtually build a N×M matrix, where each column is the
characteristic function of the CS of a model hypothesis. Each row
of this matrix indicates which models a points has given consen-
sus to, i.e., which models it prefers. We call this the preference
set (PS) of a point. According to (Duin et al., 2004), this is a
conceptual representation of a point.

Points belonging to the same structure will have similar concep-
tual representations, in other words, they will cluster in the con-
ceptual space {0, 1}M . This is a consequence of the fact that
models generated with random sampling cluster in the hypothe-
sis space around the true models.

Therefore, models are extracted by agglomerative clustering of
data points in the conceptual space. The general agglomerative
clustering algorithm proceeds in a bottom-up manner: Starting
from all singletons, each sweep of the algorithm merges the two
clusters with the smallest distance. The way the distance between
clusters is computed produces different flavours of the algorithm,
namely the simple linkage, complete linkage and average linkage
(Duda and Hart, 1973).

Figure 2: Planes recovered by J-Linkage. The colour of the point
encodes the plane it belongs to.

We propose a variation that fits very well to our problem, called
J-linkage (see Algorithm 1). First the preference set of a cluster
is computed as the intersection of the preference sets of its points.
Then the distance between two elements (point or cluster) is com-
puted as the Jaccard distance between the respective preference
sets: Given two sets A and B, the Jaccard distance is

dJ(A, B) =
|A ∪B|− |A ∩B|

|A ∪B| .

The Jaccard distance measures the degree of overlap of the two
sets and ranges from 0 (identical sets) to 1 (disjoint sets).

The cut-off value is set to 1, which means that the algorithm will
only link together elements whose preference sets overlap. Please
note that that the cut-off distance is not data dependent, but de-
fines a qualitative behaviour of the J-linkage algorithm. Indeed,
as a result, clusters of points have the following properties:

• for each cluster there exist at least one models that is in the
PS of all the points (i.e., a model that fits all the points of the
cluster)

• one model cannot be in the PS of all the points of two dis-
tinct clusters (otherwise they would have been linked).

Algorithm 1 J-LINKAGE

Input: the set of data points, each point represented by its pref-
erence set (PS)
Output: clusters of points belonging to the same model

1. Put each point in its own cluster.

2. Define the cluster’s PS as the intersection of the PSs of its
points.

3. Among all current clusters, pick the two clusters with the
smallest Jaccard distance between the respective PSs.

4. Replace these two clusters with the union of the two original
ones.

5. Repeat from step 3 while the smallest Jaccard distance is
lower than 1.

Each cluster of points defines (at least) one model. If more mod-
els fit all the points of a cluster they must be very similar. The
final model for each cluster of points is estimated by least squares
fitting.

Outliers emerge as small clusters. In our pipeline we set rejec-
tion threshold equals to the MSS, since we don’t have to deal
with a large amount of gross outliers. If different kind of geo-
metric primitives are present, a model selection step is employed
(Farenzena et al., 2008b).

Fig. 2 shows the result of fitting planes to the 3D reconstruction
of Pozzoveggiani.

5 STRUCTURE VISUALIZATION

In this section we show how all the data gathered in the preced-
ing steps of the pipeline can be used to visualize and analyze the
imaged environment in a efficient and compelling way.

The two main goals of the visualization phase can be described in
terms of scalability and fidelity of the obtained rendering. Usu-
ally a compromise has to be reached when balancing the com-
putational efficiency and the accuracy of the reproduction: we
claim however that the knowledge of the high-level structure of
the scene can reconcile elegantly these two competing goals.

Before describing our solution, it is useful to briefly review the
diverse approaches to this problem: at the lowest end of the spec-
trum, structure can be visualized just as a collection of (possi-
bly coloured) points in space, as shown in Fig. 1; if surfaces
have been extracted, another alternative consist in connecting the



aforementioned cloud in a dense triangulated mesh. Of these so-
lutions, neither is arbitrarily scalable, and only the second is ca-
pable of recapturing faithfully the original shape of the environ-
ment.

A different philosophy is employed in the Photosynth software
(http://photosynth.net): only a single picture is ever shown at full
resolution from a vantage point; other pictures that can be related
to the reference one by a homography are used to provide the
context for the user to understand and navigate the collection. An
example of this approach produced within our system is shown in
Fig 3.

Figure 3: A planar stitch of pictures in 3D.

Such a representation has a number of interesting properties: it
supports spatial navigation and provides excellent visual fidelity,
since the reference picture is always seen from the position from
which it was shoot, and augmented with a relevant context. On
the other hand however, it is structurally unable to capture image
relashionships that can’t be modeled with a collinearity.

These problems can be overcomed by using the high level mod-
els recovered during our reconstruction pipeline as a proxy for
the scene geometry, and rendering the photo collection against
them. To be scalable and effective however, this approach must
be coupled with a way to select from a arbitrary position in 3D the
subset of the available views which maximizes the visual fidelity
while containing the computational workload.

Figure 4: Unmasked rendering on the recovered primitives.

5.1 View-model affinity

We first consider the problem of selecting, given a reference view,
a number of additional views that will provide the context for the
reference one. This can be done in several ways: one possible
solution is to simply select the nearest neighbours induced by a
distance function on the camera parameters, like the following
one:

d(Gref , G) = min(log(||G−1
refG||), log(||GG

−1
ref ||))

where G are the extrinsic parameters of the considered camera.
This metric usually gives good result when the scale and the in-
trinsic parameters of the cameras are roughly the same.

In the general case however, selecting views that contain a large
number of common 3D features has shown itself a much more
stable heuristic, capable of automatically coping with scale changes
and camera tilt. Such characteristics are important for selecting a
range of images with sufficient variability. The same criteria can
be used also to evaluate the affinity between a collection of high
level primitives and a view.

When realizing that a arbitrary position and direction in space
specified by a virtual camera is akin to a regular view, it becomes
possible to select both the models and cameras that have affinity
with a arbitrary point in space.

With these data, each selected view can then be rendered us-
ing projective texture mapping on the proxy geometry that the
high level primitives constitute. If needed, the fine details lost in
the primitive extraction can be encoded in displacement or relief
maps, as suggested in (Farenzena et al., 2008a).

5.2 Mask creation

The process described in the previous section however is not suf-
ficient to guarantee an artifact-free rendering, as Fig. 4 clearly
shows. These effect can be avoded masking the projection over
each recovered primitive.

Figure 5: Points on two different planes and their recovered
masks.

The problem can be solved creating the mask for each primitive
back-projecting its points onto the image plane, and extracting
a 2D neighbourhood of the obtained points. We found that just
thresholding a low pass filtered binary image containing the point
projections gave reasonable results.

Figure 5 shows the masks obtained from two planar surfaces: as
it can be seen the recovered mask follow quite closely the un-
derlying structure. This approach works well when the three di-
mensional features are evenly distributed: in that case, we obtain
surfaces without connectivity problems.

The potential issues with color bleeding on the boundaries be-
tween primitives could be further corrected by constraining mask
borders to align with the models intersections. In our experience
however, the perceived effect of bleeding was unnoticeable.

6 EXPERIMENTAL RESULTS

Our pipeline was tested on several datasets of images. All pic-
tures were taken in uncontrolled settings and environment, and
no additional information was used.

Pozzoveggiani. Pozzoveggiani is a small church near Padua (IT)
that had been used before in (Guarnieri et al., 2004) to test pho-
togrammetric reconstruction. It has a simple planimetry: the
perimeter is composed of straight walls, with a bell tower and
a slanted roof covered with bent tiles (see Fig. 7). A cylindrical
apse protrudes from the back; several arches and slit windows
open into the well-textured brick walls.



Figure 6: Two pictures of Pozzoveggiani from our interactive visualizer.

The picture set is composed of 54 images acquired from the ground
plane with a consumer camera at a resolution of 1024x768 pix-
els, at different times and with automatic exposure. This is the
dataset that was chosen to illustrate the various step of the algo-
rithm through this paper: as was shown, our pipeline succeeds
in recovering and modeling all the perimetral walls. The good
properties of the reconstruction can also be assessed by measur-
ing the average angle between orthogonal planes, which is 90.44
degrees.

Figure 7: Two views of the Pozzoveggiani church.

Two frames from our interactive are shown in Fig. 6; as it can be
seen, it correctly models the two surfaces visible from the current
view, while discarting the background. The missing parts from
the side textures are due to a uneven distribution of the 3D fea-
tures on the walls; when seen in movement, the model faithfully
captures the expected appearance of the scene, guiding the user
in the exploration.

Valbonne. The church of Valbonne is another small church lo-
cated in France, and extensively used in the computer vision lit-
erature. This experiment comprises fifteen photos: the dataset
is recorded at a resolution of 768x512 pixels, in varying condi-
tion of illumination and occlusion. Again – as shown in Fig. 8
– our system successfully recovers all dominant planes and cam-
eras, with the front façade assimilating the contributes of the two
protrusions at its sides.

7 CONCLUSIONS

We have described a completely automated structure and motion
pipeline for the reconstruction and rendering of architectural and
urban models. Initially tailored for robustness, our method is able
to make use of the peculiar characteristics of these environments
by augmenting the initial reconstruction with high level geomet-
rical primitives which not only provide a better understanding of
the scene, but have the possibility of efficiently supporting further
processing on the data. This is demonstrated by employing them
to faithfully render the acquired environment in a scalable way.
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