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Abstract

In this paper, the problem of underwater scene understand-
ing from multisensory data is addressed. Acoustic and op-
tical devices onboard an underwater vehicle are used to
sense the environment in order to produce an output which
is readily understandable even by an inexperienced oper-
ator. The main idea is to integrate multiple sensory data
by geometrically registering data to a model. In this way,
vehicle pose is derived, and the model objects can be super-
imposed on actual images, generating an augmented reality
representation. Results on a real underwater scene are pro-
vided, showing the effectiveness of the proposed approach.

1. Introduction

Bad structured environments, like the underwater world, are
difficult to perceive and to understand. In these cases, the
integration of different sensory data is critical. This paper is
devoted to the recognition and the synthetic reconstruction
of an underwater environment, in order to support a human
operator of a Remotely Operated Vehicle (ROV). Objects
of interest are recognized and their three-dimensional (3-D)
synthetic models are displayed on the real image to gen-
erate an augmented reality representation, which improves
the perception and understanding of the surrounding envi-
ronment.
Two sensing channels, optical and acoustic, are mostly used
underwater. Typically, optical images are easier to interpret
by a human operator, but underwater visibility range is very
limited due to low illumination and clutter presence. On
the other hand, acoustic 3-D data are not affected by illumi-
nation problems but are more difficult to understand for a
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human operator. From these considerations, it appears sen-
sible to try to integrate the two channels in order to exploit
the best of both, so as to compensate their lacks.

To the best of our knowledge, our approach to sensor inte-
gration and data fusion is novel and no similar works are
present in the literature. Nevertheless, fusion and integra-
tion of different kinds of data is actually a matter of active
research [16, 4].

Concerning the usefulness to integrate different sensor
modalities and algorithms, a few works addressed such
challenging issue [12, 19, 1]. More specifically on the joint
use of optical and 3-D information, some interesting papers
can be considered concerning the fusion of intensity and
range data, the latter mainly derived by a laser range finder
[12, 10, 25, 24].

In our work, acoustic and optical underwater data are pro-
cessed separately in order to recognize the objects present
in the scene and estimate their position. In this way the rel-
ative position of acoustic and optical cameras is estimated
on-line, and data integration is achieved. We propose a sys-
tem composed by a set of processing modules of acoustic
and optical data which already containper sesome novel
aspects and solutions. However, the original issue consists
in the development of a system able to integrate different
sensor modalities and fuse different kinds of data innumer-
ical form. Our goal is to locate model objects present in a
cluttered scene and facilitate human interpretation by dis-
playing such objects on the real images in the correct posi-
tion and orientation.

The rest of the paper is organized as follows. After an
overview of the global system in Sec. 2, the acoustic sens-
ing and related data processing is described in Sec. 3. In
Sec. 4, a related description of the optical sensory channel
is reported. The integration phase is described in Sec. 5. In
Sec. 6, results on real data are reported showing the good-
ness of the method.



2. System Overview

The application scenario consists in an ROV approaching
an oil rig whose geometrical model is given in a descrip-
tive language (e.g., Virtual Reality Modeling Language,
VRML). The ROV is equipped with an optical and an
acoustical camera located at a fixed but unknown relative
position. The optical camera provides 2-D intensity images,
whereas the acoustical one provides an image consisting of
a set of 3-D points [18]. These images are not registered and
they are only partially overlapping, as the points of view and
the view frusta are different.
The model of the oil rig is composed by connected pipes.
The goal of the system is to identify and locate joints with
respect to the ROV, thereby obtaining the position of the
ROV in the 3-D model reference system.
The system is subdivided in two data processing schemes
related to the different sensory channels and in an integra-
tion phase. Each single scheme is composed by several
modules devoted to object recognition and pose estimation.
The pose of both sensors is computed with respect to the
fixed observed object. In this way, the relative sensor pose
can be computed and images can be registered (integration).
Even if our algorithm has been tested on real scenes of
tubular objects variously connected, this does not prevent
the generality of the approach and its utility in other con-
texts. In fact, the specific methods adopted in the various
phases for either acoustic or optical data processing (e.g., 3-
D skeleton extraction, 2-D edge detection) are able to deal
with different kinds of objects.

3. Acoustic sensing

In this section, we describe the processing of three-
dimensional data obtained from the acoustic camera, in or-
der to register the sensed data with the model.

3.1 Acoustic Camera

Three-dimensional data are obtained by a high resolution
acoustic camera, theEchoscope[11]. The acoustic camera
is formed by a two-dimensional array of transducers sensi-
ble to signals backscattered from the scene previously in-
sonified by a high-frequency acoustic pulse. The whole set
of raw signals is then processed in order to estimate signals
coming from fixed steering directions (called beamsignals)
and to attenuate those coming from other directions. As-
suming that the beamsignals represent the responses of a
scene from a 2D set of (steering) directions, a 3-D point
set can be extracted detecting the time instant(t�) at which
the maximum peak occurs in each beamsignal. Besides, the
intensity of the maximum peak can be used to generate an-
other image, registered with the former, representing the re-
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Figure 1. Acoustic camera.

liability of the associated 3-D measures. In other words, the
higher the intensity, the safer the 3-D measure associated.
Images are formed by64 � 64 3-D points ordered accord-
ing to an angular relation, as adjacent points correspond to
adjacent beamsignals. Their coordinates are expressed in a
3-D reference frame attached to the sensor.

3.2 Filtering and Segmentation

The raw images obtained by an acoustic camera are typi-
cally quite noisy mainly because of the environment condi-
tions and of the intrinsic characteristics of the camera. Al-
though the used acoustic camera directly performs a pre-
liminary low level processing, it has been proved useful to
filter 3-D data with a suitable algorithm. In particular, in
the first step, connected components in the image are com-
puted, where two points are considered connected if they
are adjacent in the64 � 64 angular relations matrix and if
their Euclidean distance is below a fixed threshold, depend-
ing on the spatial resolution of the camera. In such a way,
it is possible to subdivide the image in a certain number of
connected components, while discarding those components
formed by a small number of points, likely not representing
interesting physical objects. In the second step, “reliable”
connected components are formed by the points whose as-
sociated intensity is above a certain threshold, still depend-
ing on the camera properties.
After this preprocessing phase it is necessary to segment the
image, i.e. to subdivide the set of 3-D points in distinct re-
gions that are pipes’ candidates. To this purpose, the skele-
ton [21, 2] is first extracted, and then it is used to subdivide
the image in different convex components.
To extract the skeleton, we apply to the image the following
procedure [17]: for every pointx we consider all the points
that are in a sphere of radiusr centered on it. Then, we shift
x from its actual position to the centroid of such distribution
of points. We apply this procedure in a parallel way on all
the points of the image. In other words, for every point



x = (x; y; z), we define a new point~x in the following
way:

~x =
X
yj2U

yj

dim(U)
(1)

where

U = fyj : (yj � x)
2 � rg (2)

anddim(U) is the number of points inU .
The overall effect of this transformation is to shift points
on the border towards the center, while leaving points well
inside an object unaltered. The iterative application of such
a procedure tends to shift all the points of the distribution
towards the skeleton.
Then, skeleton points are labeled as branch or joint points,
still by exploiting the properties of inertial tensors. Since we
are interested in the segmentation of data in tubular struc-
tures, it is natural to choose the branches of the obtained
skeleton, or more exactly the original 3-D points collapsed
on each branch, as pipes’ candidates.
At the moment the operator is required to choose the param-
eterr and the number of iterative steps, however an adaptive
algorithm to automatize this procedure is under investiga-
tion.

3.3 Classification and Geometric reconstruction

The segmentation phase provides a certain number of clus-
ters of 3-D points that have to be classified as pipe-like or
non pipe-like ones; for this task we used a technique, re-
lated to the so called Principal Component Analysis, based
on the Inertial Tensor. Given a discrete distribution ofN
pointsfxigi=1:::N , the inertial tensor is the3 � 3 matrix
defined as

I =
X
i

(xi � o) u (xi � o) (3)

whereo is the centroid and the symbolu represents the
following operator:

a u b =

2
4(ayby + azbz) �axby �axbz

�aybx (axbx + azbz) �aybz
�azbx �azby (axbx + ayby)

3
5 :

(4)

The eigenvalues and eigenvectors ofI are then employed
to extract useful information on the shape of the discrete
distribution. Let�1 � �2 � �3 be the eigenvectors ofI. If

�1 � �2 and�1 � �3 and�2 ' �3 (5)

then the region is classified as a pipe, otherwise it is dis-
carded. To check these relations a threshold on the ratios

�2=�1 and�3=�1 is introduced, and, if it is too small, it is
probable to classify as a pipe something that is only elon-
gated, whereas, if it is too high, it is probable to loose some
pipes from the scene.
From the value of the minimum eigenvalue it is possible to
roughly estimate the radius of the tubular region. In fact, in
the case of a complete cylindrical distribution the following
relation holds:

�1 =
1

2
Nr2 (6)

whereN is the total number of points in the distribution and
r is the radius. Unfortunately, in acoustic images, points are
not distributed on the surface of a cylinder, but only on a lit-
tle portion of it. Moreover, they are so noisy that they carry
little information on the curvature. Hence, relation (6) is
only an approximation, but it is sufficient to give an order
of magnitude for the radius, as we will see in the section of
the experimental results. Finally, it is possible to determine
the approximate position of the pipe axis, whose direction
is given by the eigenvector relative to�1, by translating the
centroid of the distribution in the direction of the eigenvec-
tor corresponding to�3, that is the direction of minimum
spread of the 3-D cloud.
Even if pipes form a joint in the scene, their estimated axes
may not intersect exactly in one point. To extract an ap-
proximate intersection for the pipes we use the following
simple algorithm: for every axis pair(i; j), we define their
intersection as the midpointmij of the unique segment that
connect the two lines defined by the axis and that is per-
pendicular to both of them. If the number of axes isn, the
number of possible pairs isn(n� 1)=2. We define the joint
of the pipes as the centroid of these midpoints, i.e.

n�1X
j=1

nX
i=j+1

mij

n(n� 1)=2
(7)

This method is straightforward if there is only one joint in
the scene; if this is not the case, it is necessary to prelim-
inary subdivide the set of extracted pipes into subsets con-
taining pipes that belong to the same joint. To do this, it is
sufficient to group pipes whose distance, defined as the dis-
tance between the lines passing through the axis, is below a
threshold that depends on the radius of the pipes. This can
be done, by building theIncidence GraphIG of the pipes,
i.e., a graph whose nodes are the pipes and in which two
nodes are connected if the distance between the correspond-
ing pipes is below the given threshold. The sought joints
correspond to the maximal complete subgraphs ofIG; i.e,
subgraphs that are complete and that are not contained in
any larger complete subgraph. Two maximal subgraphs can
have no more than one node in common (corresponding to
the pipe that connects two joints).



To summarize, the skeleton segmentation and the subse-
quent analysis with the inertial tensor is able to recognize
most of the pipes present in the observed scene and to re-
construct in a rough way their geometrical properties. Al-
though some pipes may be lost in this phase, a partial re-
construction is sufficient for the subsequent matching and
alignment.

3.4 Model-view registration

Acoustic data points which lie on the surface of cylinders
are expressed in the acoustic reference frame, whereas the
underlying object surface model is placed in the model ref-
erence frame. The unknown rigid transformation that links
the two reference frames is obtained by registering model
and data.
In their paper, Besl and McKay [3] describe a general pur-
pose method for the registration of rigid 3-D shapes which
they refer to as the Iterative Closest Point (ICP) algorithm.
This approach eliminates the need to perform any feature
extraction, or to specify feature correspondence.
The ICP algorithm is only guaranteed to converge to a local
minimum, which may not correspond to the global mini-
mum. In our case, pre-alignment is obtained by matching
the segmented data with the model, which produces a fairly
good initial alignment, sufficient to achieve global conver-
gence.

3.4.1 Pre-alignment

In the previous sections we showed how to extract the rel-
evant geometrical properties for the joints in the observed
scene. Such properties are used to match these joints with
the ones stored in the VRML model. In particular, we use
the angles between pipes as the recognition feature: two
joints match if such angles are equal within a certain error.
Since the joints analyzed are composed by a low number
of pipes, the correspondence is actually performed with an
exhaustive method, although the use of more sophisticated
algorithms, based on Interpretation Trees [9], are under in-
vestigation.
After a matching with the database has been found, it is pos-
sible to obtain the raw pose (i.e., position and orientation)
of the acoustical camera with respect to the model coordi-
nate system by computing the rigid transformation aligning
the estimated pipe axes and the model pipe axes.

3.4.2 ICP algorithm

Let us suppose that we have two sets of 3-D points which
correspond to a single shape but are expressed in different
reference frames. We will call one of these sets the model
set X, and the other the data set Y. Assume that for each
point in the data set, the corresponding point in the model

set is known. The problem is to find a 3-D transformation
which, when applied to the data set Y, minimizes a distance
measure between the two point sets. The goal of this prob-
lem can be stated more formally as follows:

min
R;t

NX
i=1

kxi � (Ryi + t)k2; (8)

whereR is a3� 3 rotation matrix,t is a3� 1 translation
vector, and the subscripti refers to corresponding elements
of the sets X and Y. Efficient, non-iterative solutions to this
problem were compared in [14], and the one based on Sin-
gular Value Decomposition (SVD) was found to be the best.
It can be easily seen that (8) is equivalent to

min
R

NX
i=1

k�xi �R�yik
2; (9)

where�xi and�yi are the centralized point obtained by sub-
tracting the respective centroids. Equation (9) is minimized
whentrace(RK) is maximized [13], where

K =

NX
i=1

�xi�y
>
i :

If the SVD ofK is given byK = VDU>, then the optimal
rotation matrix isR = VU>. The optimal translation is
then computed as the difference between the centroid of X
and the centroid of the rotated Y set.
The general 3-D registration problem that ICP addresses,
differs from the corresponding point set registration prob-
lem in two important regards. First, the point correspon-
dence is unknown. Second, 3-D shapes to be registered are
not necessarily represented as point sets.
For each pointyi from the set Y, there exists at least one
point on the surface of X which is closer toyi than all other
points in X. This is theclosest point, xi. The basic idea be-
hind the ICP algorithm is that, under certain conditions, the
point correspondence provided by sets of closest points is a
reasonable approximation to the true point correspondence.
Besl and McKay proved that if the process of finding clos-
est point sets and then solving equation (8) is repeated, the
solution is guaranteed to converge to a local minimum. The
ICP algorithm can now be stated:

1. For each point in Y, compute the closest point in X;

2. With the correspondence from step 1, compute the in-
cremental transformation(R; t) with SVD;

3. Apply the incremental transformation from step 2 to
the data Y;

4. Compute the change in total mean square error. If the
change in error is less than a threshold, terminate. Else
goto step 1.



In this way we obtain the rigid transformation that brings
this reference frame onto the model reference frame, given
by a4� 4 homogeneous matrixGa:

4. Optical sensing

In this section, we describe the processing of the optical
data in order to performregistration, that is solving for the
camera pose that best fit a model to some matching image
features.
Since the model is a tubular rig, the relevant image fea-
tures are the segments forming the bounding contours of
the pipes1.

4.1 Camera model

The optical device is modeled by thepinhole camera, which
is given by itsoptical centerC and itsretinal plane(or im-
age plane) R. A 3-D point W is projected into an image
point M given by the intersection ofR with the line con-
tainingC andW (Figure 2). The line containingC and or-
thogonal toR is called theoptical axis(theZ axis in Figure
2) and its intersection withR is theprincipal point. The
distance betweenC andR is thefocal distance(note that,
since in this modelC is behindR, real cameras will have
negative focal distance).

R

W

C

Z

M

X

Y

Figure 2. The pinhole camera model, with the
camera reference frame(X,Y,Z) depicted.

Letw = [x y z]> be the coordinates ofW in themodel ref-
erence frameandm = [u v]> the coordinates ofM in the
image plane (pixels). The mapping from 3-D coordinates to
2-D coordinates is theperspective projection, which is rep-
resented by a linear transformation inhomogeneous coordi-
nates. Let ~m = [u v 1]> and ~w = [x y z 1]> be the ho-
mogeneous coordinates ofM andW respectively; then, the

1Given a viewpoint, therim of an object is the set of all the points
on the object surface where the line joining the viewpoint (optical ray) is
tangent (assuming perspective projection). The projection of the rim is the
bounding contourof the object in the image.

perspective transformation is given by the3�4 matrix ~P:

� ~m = ~P ~w; (10)

where� is an arbitrary scale factor. The camera is there-
fore modeled by itsperspective projection matrix(hence-
forth PPM) ~P, which can be decomposed, using the QR
factorization, into the product

~P = A[Ij0]Go: (11)

The 3 � 3 matrix A depends on theintrinsic parameters
only: focal length in pixels, aspect ratio, principal point and
skew factor. The camera position and orientation (pose) are
encoded by the4�4 matrixGo representing the rigid trans-
formation that brings the camera reference frame onto the
model reference frame.R is the3� 3 rotation matrix andt
is the3� 1 translation vector.
We seek the matrixGo, assuming that theconstantintrinsic
parameters have been computed by off-line by a calibration
procedure [22].

4.2 Lines grouping

Underwater images have a very low signal to noise ratio, be-
cause of the low illumination and bad environmental condi-
tions. In order to filter the noise without affecting the signal,
we use the Perona-Malik [20] anisotropic smoothing filter,
which preserves the information about the object contours.
Basically, it is a Gaussian smoothing with a standard devia-
tion depending on the grey levels gradient.
Straight lines are extracted by combining Canny [6] edge
detector and Burn’sPlane Fit Algorithm[5]. First, edge
points are extracted with the Canny edge detector, that al-
lows to find very sharp edges (often one pixel large) thanks
to the non-maxima suppression. Then, pixels are clustered
in support regions if they are spatially adjacent and if their
gradient orientation is roughly the same. The line parame-
ters are computed with plane intersections of the weighted
fit to the intensity values and the horizontal average pixel in-
tensity plane, within a support region. The weight favours
intensity values of pixels with high gradient magnitude.
Taking primarily the gradient orientation as evidence for a
line and using the plane fit method, the algorithm actually
extracts long, straight lines as well as shorter lines and is
effective in finding low-contrast lines.
Each extracted segment is then labeled, and its attributes are
computed. In order to find pipes in the image, pairs of seg-
ments are grouped together, which are likely the projection
of the boundaries of a pipe (not every segments pair is the
projection of a pipe). Grouping is based on proximity and
coveringcriteria: two segments are paired if their projec-
tions onto their median axis overlap by more than 60% and
the distance between their midpoints is less than a threshold
(that is related to the expected distance of pipes boundaries
in the image).



4.3 Model-view registration

Optical alignment is performed using an algorithm due to
Lowe [15] that finds the camera pose yielding the best
matching between each image segment and the projection
of its corresponding cylinder rim. The algorithm assumes
that image-model correspondences are given. In our case
the initial pose for the optical camera is assumed to be the
same of the acoustic one (Ga), already computed. This al-
lows to project the model accordingly, and model segments
are matched against the image segments using an algorithm
introduced by Scott and Longuet-Higgins [23] for associat-
ing features of two arbitrary patterns.
Were the approximate camera pose unknown, a more com-
plex recognition algorithm should be used [7].

4.3.1 The Scott and Longuet-Higgins’ algorithm

Scott and Longuet-Higgins [23] proposed an algorithm
based on the singular value decomposition (SVD) for asso-
ciating features of two images. The algorithm incorporates
both the principle of proximity and the principle of exclu-
sion.
Let I and J be two images, containingm featuresIi and
n featuresJj , respectively, which we want to put in one-to-
one correspondence. The algorithm consists of three stages.
The first stage is to build aproximity matrixG of the two
sets of features with elements

Gij = e�r
2

ij=2�
2

(12)

whererij is a well defined distance between featureIi and
Jj and� is an appropriate unit of distance, that controls the
scale of interaction. The next stage is to perform the SVD
ofG

G = USV> (13)

whereU andV are orthogonal andS is a non-negativem�
n diagonal matrix.
Finally,S is converted into a newm�nmatrixD by replac-
ing every diagonal elementSii with 1 and obtain another
matrix

P = UDV> (14)

of the same shape of the original proximity matrix and
whose rows are mutually orthogonal. The elementPij in-
dicates the extent of pairing between featureIi and feature
Jj . If Pij is both the greatest element in its row and the
greatest element in its column, then we regard those two
different featuresIi andJj as being in correspondence with
one another.
This matrix incorporates the principle of proximity by con-
struction ofG, and the principle of exclusion by virtue of
its orthogonality.

In our application, elements to be matched are lines, ex-
pressed in the normal form:

u cos�i + v sin�i � di = 0: (15)

As a distance between model lines and image lines we used
the following

rij =






�
cos�i; sin�i;

2di
maxl dl

�
�

�
cos�j ; sin�j ;

2dj
maxl dl

�




(16)

The first two components are bounded in the interval
[�1; 1], whereas the third belongs to[0; 2]: Since the ini-
tial pose is quite close to the true one, this simple matching
is sufficient.

4.3.2 Lowe’s algorithm

Let us suppose thatpoint correspondencesare available
and that the intrinsic camera parameters are known. Let
w1 : : :wN beN points of an object model expressed in the
model reference frame andm1 : : :mN be the image points,
projections of thewi: The relation between an object point
and an image point is given by the perspective projection:

�A�1 ~mi = [Rjt] ~wi: (17)

derived from (11) by puttingGo =

�
R t

0 1

�
: Let ~pi =

[ui; vi; 1]
> = A�1 ~mi be thenormalized image coordi-

nates. Expanding, we see that each point correspondence
generates two equations,8>>><

>>>:

ui =
r>1 wi + t1

r>3 wi + t3

vi =
r>2 wi + t2

r>3 wi + t3
:

(18)

whereR = [r1; r2; r3]
> andt = [t1; t2; t3]

>: The 12 un-
known components ofR andt can be determined from a
sufficient number of points correspondences solving a linear
system. The resultingR, however, is not guaranteed to be
orthogonal. To explicitly enforce orthogonality,R must be
parameterized with the three Eulerian angles�;  ; �, ending
up with a nonlinear system of six unknown. Let’s think of
(18) as a mappingFi : R

6 ! R2 from the six parameters
space to the image coordinatesui; vi. Then (18) is equiva-
lent to

pi = Fi(e): (19)

wheree = [t; �;  ; �]>. This is solved by the following
Newton iteration:e! e��e where�e is the solution of
the following linear system of equations:

pi �Fi(e) = Ji �e (20)



whereJi = @ri=@e is the Jacobian of the residualri =
pi�Fi(e) . The six unknowns�t;��;� ;�� can be de-
termined if at least three points correspondences are known.
However, to counteract the effect of inaccurate measure-
ments or correspondences, as many correspondences as
possible are typically use.
Newton’s method starts off with an initial guess for
t; �;  ; �, and, for each pointwi i = 1 : : :N , computes
the location ofpi through (18). The method proceeds by
computing new estimates for the rotation matrix and trans-
lation vector, and iterating the procedure until the norm of
the residualsri becomes small enough. In this way, a least-
squares minimization is performed.
Fi is linear with respect to translation and scaling over the
image plane, and approximately linear over a wide range of
values of the rotational parameters. Hence, the method is
likely to converge to the desired solution for a rather wide
range of possible starting positions. Given the small dis-
placement between the two and the negligible rotation, this
is usually sufficient to ensure convergence.
The method can be easily extended to cope withline corre-
spondences. Let us write the equation of a line in the image
in the normal form

u cos�+ v sin�� d = 0: (21)

Now, given a set of pairs of corresponding image and
model lines, we choose two points on each model line and
compute the distance between each projected point. Let
[u(e); v(e)]> be one of the projected points, then the resid-
ual is the signed distance of the point from the matching
line:

r = u(e) cos�+ v(e) sin�� d (22)

The derivatives ofr, needed in the Newton iteration, are
simply

@r

@e
=
@u

@e
cos�+

@v

@e
sin�; (23)

that is a linear combination with weightssin� andcos� of
the partial derivatives that compose the Jacobian found for
point correspondences. Since each point gives one equa-
tion for the correction parameters, and two points are suffi-
cient to uniquely identify the model line, a line-to-line cor-
respondence yields the same information (two equations) of
a point-to-point correspondence, and the structure of algo-
rithm remains unchanged.
The case of a smooth boundaries objects, as cylinders, is
different. A rim generated by a sharp edge is stable on the
object as long as the edge is visible, whereas a rim gen-
erated by a smooth surface changes continuously with the
viewpoint. In our case, the rim is a line in space whose po-
sition is function of the parameterst; �;  ; �. Hence, the

expression of the Jacobian of the residuals becomes more
complicated. However, as noted by Lowe [15], ignoring
this dependence in the computation of the Jacobian, thereby
treating the rim as a fixed line in space, does not prevent the
algorithm to converge, and does not affect the precision of
the final alignment.

5. Integration and Virtual modeling

Given a rig composed by an optical and an acoustic camera,
and given an acoustic image, composed by a set of target
points, each with a certain 3-D position, we want to project
it onto the optical image plane, obtaining a depth map with
reference to the image plane.
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Figure 3. Optical/acoustic calibration

To this purpose, the relative pose of optical and acoustic
cameras is needed. In principle, one should calibrate the
cameras. A suitable object should be manufactured which
gives raise to distinct features both in the acoustic image
and optical image. This is very difficult to achieve, mainly
because of the low resolution of acoustic device. In our
approach, we use the scene itself as a calibration object.
Knowing the CAD model of the observed objects, we reg-
ister both acoustic and optical data to the model, thereby
obtaining the relative pose of optical and acoustic cameras.
Since this process is done on-line, better estimates can be
obtained by integrating the measurements over time, using
a Kalman filter [8].
Let Go be the matrix representing the pose of the optical
camera, obtained after optical alignment, as described in
Sec. 4:

~wstd =Go ~wmodel; (24)

and letGa be the rigid transformation that brings the acous-
tic camera reference frame onto the model reference frame,
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the Echoscope. The joint is clearly visible,
but there are also spurious points.

Figure 5. Optical image with superimposed
the projected model according to the initial
pose estimate (dashed lines) and to the final
pose estimate (solid lines).

computed by 3-D alignment, as described Sec. 3:

~wsonar = Ga ~wmodel: (25)

By composing the two transformations we get:~wstd =
GoG

�1
a ~wsonar: Hence, the PPM that projects the 3-D

points expressed in the acoustic camera reference frame to
the image plane of the optical camera is given by

~Poa = A[Ij0]GoG
�1
a : (26)

The intrinsic parameters matrixA is the same of the optical
camera, and is obtained from a calibration procedure.
By projecting the 3-D points onto the image plane while
keeping the third coordinate, which represents the distance
of the point to the focal plane of the camera, we obtain a
depth field defined at sparse locations. To obtain a proper
depth map, first a surface mesh is generated by Delaunay tri-
angulation in the image plane. The mesh may have several
unwanted features upon creation, such as small, insignifi-
cant noise patches and jagged boundaries. Long edges and
small unconnected surface patches are then removed. More-
over, since the acoustical data has been registered to the
model, the points falling outside the pipes boundaries – be-
cause of the low spatial resolution of the acoustic device
– are discarded. Finally, a uniformly sampled surface at a
higher resolution than the original mesh data is obtained by
interpolation and resampling over the image pixels grid. In
this way, we obtain a depth map referred to the optical im-
age.

Moreover, the accurate estimate of the position of the sys-
tem relative to the environment is used in combination
with the database information to provide a high quality, 3D
graphics, virtual display of the environment. This scene can
be viewed from any position and direction, including from
the ROV itself, and as this virtual view is unaffected by tur-
bidity, etc., it provides a clear and easily understood view
of the complete working environment.

6. Results

In this section, we show one of the results obtained on a
typical real case. A ROV equipped with a video camera and
the Echoscope was used to take images of an underwater
rig off Bergen (Norway). The video camera was calibrated
underwater using a suitable calibration jig [22]. The lateral
displacement between the two cameras was approximately
300 mm, and the view axes were approximately parallel.
We didn’t rely on this measurements though, for the rela-
tive pose of the cameras was obtained as explained in the
previous sections.
Our procedure starts from the raw acoustic data (Fig. 4) and
the image (visible in Fig. 5) of a scene consisting of three
pipes of radii 500mm and 250mm, viewed from a distance
of approximately 7.7m. The registration of 3-D data con-
verged to a solution with a residual (RMS points-model dis-
tance) of 70 mm. The result of optical registration is shown
in Fig. 5. The result of integration can be appreciated in



Figure 6. Acoustic depth map registered to the
optical image. The gray level of a given pixel
represents its depth (the darker the closer).
Solid lines represents the model projected ac-
cording to the camera pose estimate.

Figure 7. Surface interpolating the (pro-
cessed) 3-D acoustic points, with the real im-
age texture mapped onto it. An arbitrary back-
ground plane is also shown.

Fig. 6, which shows a depth image registered to the optical
image, where the depth for each pixel is computed from the
acoustic measures.
In Fig. 7, the same depth map is shown as a surface, with
the original image texture-mapped onto it. Finally, in Fig. 8,
a view of the synthetic VRML model with the 3-D points
superimposed is shown. The point of view has been slightly
changed to make visible two pipes that were occluded in the
original image.

7. Conclusions

Guidance and inspection/maintenance/repair (IMR) tasks
performed by ROVs are very difficult for several reasons.
They require specialist crew, expensive training and many
hours of practice. Output from the video camera is difficult
to understand due to the 2-D nature of the images or bad en-
vironmental conditions leading to disorientation. This sit-
uation is not significantly improved if traditional acoustic
sensors are used, as their output is not available in a form
which is readily understandable even by a trained operator.
The aim of the VENICE2 project, within which this work
has been carried out, is to overcome this difficulties.
This paper presents a system aimed at assisting an ROV pi-
lot by presenting him an augmented reality image by in-
tegrating multisensory data coming from an optical and a

2http://www.disi.unige.it/project/venice/

novel acoustic sensor (Echoscope). This virtual display of
the working environment provides the basis for undertak-
ing many typical underwater tasks in comparative ease com-
pared with existing methods using video cameras only.
Available data are matched separately against a model in
order to compute the pose of each single sensor with respect
to the model reference frame. In addition, the calibration of
the two sensors leads to the registration of 3-D acoustic data
with 2-D optical image.
The system includes some interesting methods for both
acoustic and optical data processing. Among these ones,
the main significant issues addressed can be identified in
the synergic use of two different sensory devices, the cal-
ibration of the relative pose of the two sensors using the
observed objects, and the integration of 3-D and 2-D data at
numerical level.

Acknowledgements

The authors would like to thank Dr. R. Hansen of Omnitech
A/S3 for kindly providing the images acquired by the Echo-
scope acoustic camera.

3http://www.omnitech.no



Figure 8. Virtual modeling of the scene with
the 3-D acoustic points superimposed.
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