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line extraction: 2D wall samples are identified, oroject 2D wall samples with normals min-hashed J-linkage to extract lines VP detection via min-hashed J-linkage
tlﬁen m.m-lhashed J-linkage robustly recovers to recover Manhattan orientations
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As a preliminary pruning, those lines that are
supported by few wall samples, and the ones
that do not conform to the Manhattan Word

assumption are rejected as outliers. \ \

topological refinement

Topological refinement: subsets of faces that |
are adjacent and, at the same time, “see” a ] |
consistent extent of common walls, are |

grouped through a min-hashed single- | ,
linkage clustering based on visibility. - _ﬂ— / =

Segments that separate cells belonging to . dod model
distinct clustered regions are retained as line arrangement clustering based on visibility sets of cells exiruded mode
dominant walls.
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