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Abstract

This paper deals with the extraction of multiple models from outlier-contaminated
data. The method we present is based on preference analysis and low rank approxima-
tion. After representing points in a conceptual space, Robust PCA (Principal Component
Analysis) and Symmetric NMF (Non negative Matrix Factorization) are employed to
reduce the multi-model fitting problem to many single-fitting problems, which in turn
are solved with a strategy that resembles MSAC (M-estimator SAmple Consensus). Ex-
perimental validation on public, real data-sets demonstrates that our method compares
favourably with the state of the art.

1 Introduction

Geometric multi-model fitting aims at extracting parametric models from unstructured data
in order to organize and aggregate visual content in suitable higher-level geometric struc-
tures. This ubiquitous task can be encountered in many Computer Vision applications, for
example in 3D reconstruction, where it is employed to estimate multiple rigid moving ob-
jects in order to initialize multi-body structure from motion, or in the processing of 3D point
clouds, where planar patches are fitted to produce intermediate geometric interpretations.

In practice, it is necessary to overcome the “chicken-&-egg dilemma” inherent to this
problem: in order to estimate models one needs to first segment the data, but in order to
segment the data it is necessary to know the models associated with each data point. The
presence of multiple structures hinders robust estimation, which has to cope with both gross
outliers and pseudo-outliers.

1.1 Related work.

Among the wide variety of algorithms for robust estimation proposed in Computer Vision,
the analysis of consensus together with its dual counterpart, the analysis of preferences,
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can be traced as a leitmotiv connecting the extensive literature on geometric fitting. The
consensus of a model is defined as the set of data points that fit the model within a certain
inlier threshold €; analogously, the preference set of a point is the set of models having that
point as an inlier.

Consensus analysis Consensus-oriented methods instantiate a pool of provisional model
hypotheses by random sampling, hence retain the models that better explain the data by in-
specting their consensus sets. This idea is at the core of the celebrated RANSAC (Random
Sample Consensus) algorithm and its relaxations, namely MSAC (M-estimator Sample Con-
sensus) and MLESAC (Maximum Likelihood Estimation Sample Consensus) [27]. Many
improvements of the RANSAC paradigm have been proposed in the literature, e.g. [8, 17],
the interest reader can find a nice overview on all these methods in [6]. In the case of multiple
models, Multi-RANSAC [34] and its variants [10, 20] rely on the same principle; also the
popular Hough transform and the randomized version [30] can be seen as consensus-based
algorithms, where models are revealed as peaks obtaining higher consensus in a quantized
hypothesis space. Moreover, maximizing the consensus set of models is the foundation of
many optimization algorithms [12] designed for geometric fitting.

Preference analysis In a dual fashion, preference analysis, introduced by Residual His-
togram Analysis [33], reverses the role of data and models: rather than considering models
and inspecting which points match them, the preference set of individual data points are ex-
amined. More precisely, the residuals of each data point are taken into account in order to
build a conceptual space in which points are portrayed by the preferences they have accorded
to random provisional models. J-Linkage [26] and T-Linkage [19] belong to this category. In
particular, these two algorithms share the same first-represent-then-segment scheme: at first
data are represented respectively either as characteristic functions or as continuous ones tak-
ing values on the hypothesized models, then the conceptual representations are segmented
by a greedy bottom-up clustering step exploiting either the Jaccard [13] or the Tanimoto [25]
distances in order to measure the agreement between preferences, and using the fact that
preferences of inliers from the same structure are correlated.

RCMSA (Random Cluster Model Simulated Annealing) [21] as well takes advantage of
this idea representing data points as permutations on a set of tentative models constructed
iteratively, using subsets larger than minimal. Point preferences are organized in a weighted
graph and the multi-model fitting task is stated as a graph cut problem which is solved effi-
ciently in an annealing framework.

In addition, a stream of investigations focused on higher order clustering [1, 11, 14,
31] implicitly adopts a preference based approach. In these works higher order similarity
tensors are defined between n-tuple of points as the probability that these points are clustered
together. In practice this measure is approximated exploiting the residual error of the n points
wrt provisional models; this preference information is encapsulated in hypergraphs or multi-
way order tensors, which are properly reduced to pairwise similarity and fed to spectral
clustering-like segmentation algorithms. For example, Sparse Grassmann Clustering (SGC)
[14] approximates the multi-way similarity tensor as the Gramian matrix defined by the inner
product of points in the preference space. Hence, following the spirit of spectral clustering,
which works only with a few eigenvectors of the similarity matrix , the Gramian is projected
on its best low rank approximation in a least square sense, using Grouse [3]. At the end data
are segmented applying k-means.
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1.2 Paper contributions

In this paper we present our attempt to solve the chicken-&-egg dilemma by conceiving an
original method aimed at geometric multi model fitting. The main idea, pictorially repre-
sented in Fig.1, is to build on the preference analysis exploiting a robust M-estimator and
integrating in this approach decomposition techniques, such as Robust Principal Component
Analysis (Robust PCA) and Nonnegative Matrix Factorization (NMF).

Loosely speaking, our method can be thought as a sort of “robust spectral clustering”.
It is well known [28] that spectral clustering produces accurate segmentations in two steps:
at first data are projected on the space of the first eigenvectors of the Laplacian matrix and
then k-means is applied. The shortcoming of this approach is that it is not robust to outliers.
We propose to follow the same scheme enforcing robustness: the eigen-decomposition step
is replaced by Robust PCA on a pairwise affinity matrix, and Symmetric NMF [16] plays
the role of k-means. In this way we are able to reduce the multi-model fitting problem
to many single-fitting problems which are solved by scrutinizing the product between the
matrix produced by Symmetric NMF and the preference matrix, together with the use of
robust statistics.

Preference representation Robust low rank analysis Models and segment extraction
MSS with
P K=UU" +58 mzllx(tIJ(U(DB))z higher
Preference matrix cols consensus
ﬁ I | P— I Il final segmentation
g I = Il + I I .
hel
® Pl
2 £
3 kernel low rank sparse
Data points

Figure 1: Our method in a nutshell: data points are shifted in a conceptual space where they
are framed as a preference matrix ®. A similarity matrix K is defined exploiting agreement
between preferences. Robust PCA and Symmetric NMF are used to robustly decompose
K=UUT+S, where S is a sparse matrix modelling outliers, and U is a low rank matrix
representing the segmentation. Finally, models are extracted inspecting the product of the
preference matrix with thresholded U, mimicking the MSAC strategy. (Points are ordered
by cluster for visualization purposes)

2 Preference analysis
Along the same line of T-Linkage, our method starts shifting the data points X = {x1,...,x,},

from their ambient space to a conceptual one, where they are portrayed as vectors of prefer-
ences. This representation can be formalized by a vectorial map:

0= (d1,....,00) : X = [0,1]", (1)
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defined component-wise as the Cauchy weighting function:

1

where d measures the distance between a datum x and a provisional model %}, o, is an
estimate of the standard deviation of the residuals and 6 is a tuning constant, set to 5.0 in all
experiments. Tentative models are instantiated by drawing at random m minimal sample sets
(MSS), i.e. the minimum-sized set of data points necessary to estimate a model, as further
described below.

The rationale behind this construction is that the map ¢ collects in a vector &' = ¢ (x;) €
R the preferences granted by x to the models #; (j =1,...,m) with a vote in [0, 1] accord-
ing to its residuals. We indicate with @ = [®!,..., "] € R™" the matrix whose columns
are the point coordinates in the preference space. Rows corresponds to provisional mod-
els. The agreement between the preferences of two points in the conceptual space reveals
the multiple structures hidden in the data: points sharing the same preferences are likely to
belong to the same structures. This notion is captured by defining a positive semi-definite
kernel matrix K € [0, 1]"*" on @:

$;(x) j=1.m, @

(P, D7)
127>+ (| D7||> — (@', /)

K(i,j) =exp(—7(i,j)*) where (i, j) =1 3)

Observe that @ endowed with this kernel resembles in spirit the conceptual space adopted
in [19], where the notions of consensus and preference sets are relaxed to continuous func-
tions and the Tanimoto distance 7 is used to measure preference agreement. However some
differences can be pointed out. In fact ¢ is a continuous robust weighting function (of the
type employed in M-estimators), whereas the embedding proposed in T-Linkage uses the
inlier threshold to cut off the preferences of points having distance greater than €; moreover
the kernel K replaces the use of the metric 7.

& can also be thought as a weighted hyper-graph: hyper-edges represent sampled models
and weights correspond to point preferences. In this interpretation the role of the kernel
matrix K is to reduce the multi-way similarity to a pairwise affinity.

Biased Random Sampling.  Different sampling strategies can be used to generate the
pool of provisional models. If uniform sampling is employed, a large number of trials is
required for reaching a reasonable probability of hitting at least a pure (i.e., outlier free)
MSS per model, as explained in [26]. Hence, many strategies have been proposed in order
to guide sampling towards promising models both in the case of one model [7, 9] and in the
multiple models scenario [5]. With localized sampling in the data space [15] neighbouring
points are selected with higher probability, thereby reducing the number of hypotheses that
have to be generated. However the assumption that points of the same structure are close in
the ambient space is not satisfied in every applicative scenario (e.g in homography fitting,
points belonging to the same plane may be far apart in the image) and introducing a local
bias requires additional prior knowledge on the data distributions in the ambient space.

On the contrary in the preference space it is possible to exploit the Tanimoto distance,
which always ranges in the interval [0, 1] in order to promote the extraction of inliers of the
same structure using conditional sampling. In this way the probability of sampling outliers
is considerably reduced. In fact outliers can be recognized as the most separate points in


Citation
Citation
{Magri and Fusiello} 2014

Citation
Citation
{Toldo and Fusiello} 2008

Citation
Citation
{Chum and Matas} 2002

Citation
Citation
{Chum and Matas} 2005{}

Citation
Citation
{Chin, Yu, and Suter} 2012

Citation
Citation
{Kanazawa and Kawakami} 2004


L. MAGRI, A. FUSIELLO: ROBUST PREFERENCE ANALYSIS 5

the conceptual space, because their preferences deviate significantly from the rest of the data
resulting in higher Tanimoto distances.

For this reason, following the approach proposed in [5], we sample the hypotheses di-
rectly in our conceptual space. This can be easily done performing a preliminary uniform
sampling of hypotheses, hence representing the data in the preference space according to
these provisional models and then drawing MSS by biased sampling in the conceptual space.

In particular if a point x; has already been selected, then a point x; such that i # j has the
following probability of being drawn:

LN 2
P(xilx;) = %exp (T(l’1)> . 4)

(04

where Z is a normalization constant and ¢ controls the local bias in the conceptual space.
Setting o to the median of point-to-point Tanimoto distances we obtained results comparable
to localized sampling, without the need of a fine tuning.

The kernel matrix K is then updated on the fly based on the hypotheses already sampled.

3 Clustering

We shall now describe how the affinity matrix can be exploited to segment the data. Consider
an ideal affinity n X n matrix F which encodes point membership to the same segment:
Fij = 11if x; and x; are clustered together and F; ; = 0 otherwise. If data belonging to the
same segment are arranged as consecutive points, the matrix F exhibits a block structure and
therefore has rank k equal to the number of clusters in the data.

As described in [31, 32] the problem of partitioning a set of data points in k segments
starting from a positive semi-definite affinity matrix K is equivalent to approximating K in a
least square sense by means of an ideal affinity matrix F. In formulae, denoting by || - || the
Frobenius norm of a matrix, we are interested in:

min||K — F|7 ®)

under conditions on F to be further specified. This problem is usually formulated by intro-
ducing a matrix U € R™** such that F = UU ", which represents a soft segmentation of the
data: the element U;; measures the probability that the i-th point belongs to the j-th segment.

According to the constraints imposed on U, the solution of (5) corresponds to different
classical clustering algorithms, such as spectral clustering or k-means. These constraints are:
U>0,rank(U) =k ,U"U =Tand UU" is doubly stochastic. Hard-clustering assignment
implies orthogonality; being doubly stochastic represents a balancing condition on the sizes
of the clusters; the non negativity of U ensures physical meaning of the entry of U which
can be interpreted of probability of points to belong to a given segment.

The last constraint is the most important according to [31, 32], where it is claimed the
key ingredients for solving Problem (5) are the low-rank nature of both the affinity matrix
and U (since since k < n), together with the non-negativeness of U.

Symmetric NMF (SymNMF) [16], that recently stands out in the clustering literature,
enforces exactly these two proprieties. The idea at the basis of SymNMF is to rephrase (5)
in the equivalent formulation

min [|K-UU" |7 6)
UeR"k
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and hence to find U minimizing (6) using an improved Newton-like algorithm that exploits
the second-order information efficiently.

When data is contaminated by gross outliers K has no longer low rank. For this reason,
before applying SymNMEF, we search robustly for the lowest-rank matrix L and the column-
sparsest matrix S such that the data matrix can be decomposed as

K=L+S . 7

This Robust PCA step mimics in a outlier-resilient way the projection of data on the space of
k eigenvectors of the similarity matrix performed in spectral clustering. The decomposition
is obtained with the Augmented Lagrangian Method (ALM) [18], which solves the problem

argmin ||L||« + A||S||; s.t K=L+S, 8)

where || - ||« denotes the nuclear norm and || - ||; the sum of absolute values. The parameter
A has a provable optimal value [4] at A = ﬁ where n is the dimension of the square matrix
K.

Please note that this approximation differs from the one adopted by SGC [14] where a
low rank space is fit to a Gramian matrix in a least square sense. We depart from this model
because a least squares fit is reliable as long as the sampled hypotheses are pure, but this
property can not be ensured in presence of outliers.

We can now apply the SymNMF machinery to L (instead of K) in order to find a com-
pletely positive rank-k factorization L = UU ". A segmentation is obtained from U by con-
sidering the matrix B with the same dimension of U that has a one in each row where U
achieves its row-maximum, and zero otherwise: B; ; = 1 means that point i belongs to seg-
ment j. This last step is similar to the customary k-means that comes at the end of spectral
clustering.

At this point, the matrix B represents a provisional segmentation of the points into k
segments containing outliers. The goal of the next section is to refine this segmentation and
prune outliers, by solving, within each segment, a robust single model fitting.

4 Pruning outliers

Model extraction. Let us first observe that @1 (where 1 is a vector of ones) is the sum
of the preference vectors of all the points in @ , so its entries are the votes obtained by
each model. Hence finding the maximal entry of @1 is equivalent to doing a sort of MSAC
(M-estimator SAmple and Consensus) with the Cauchy weighting function (Eq. 2).

We have seen that columns of B = [B!, ..., B¥] can be regarded as indicators of the seg-
ments. Hence @B’ is the sum of the preference vectors of the points in the segment i, and its
maximal entry represents the most preferred model in that segment. Therefore, the maximum
over the columns of @B are the indices of the models in @ that achieve maximum consensus
in each segment. According to the observation above, this is equivalent to running a MSAC
within each segment i with preference matrix (& diag(B’)). The above reasoning can be ex-
tended to the matrix U o B with entries in [0, 1], that corresponds to a soft segmentation in
which outliers are under-weighted (o denotes the component-wise or Hadamard product).

We found beneficial, prior to this step, to augment @ with some pure models by random
sampling and to remove "spurious” ones, according to the segmentation represented by B.
In particular, we relax the concept of "spurious” to those models that are not contained in a
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single segment with at least 50% of their points; in other words, we label the points in &
according to the segmentation given by B and we remove the columns where no label occurs
more than 50% of the times. The new sampling is implemented by drawing random MSS
within each segment i with probabilities given by the non-zero entries of (U o B)'.

In summary, the maximal entry in each column of @(U o B) corresponds to the index
of the most preferred model by the points of the segment, hence we choose it as the model
that represents the segment. This could be a final result if the goal was to find the correct
models. However, having recognized the entangled nature of model fitting and segmenta-
tion problems, we will unravel it by iterating between refining the model and updating the
segmentation.

Segmentation. The models computed from maxcs(P(U o B)) define a new tentative seg-
mentation by assigning points to the nearest model. Within this segmentation, outliers are
singled-out as points with a residual higher than a threshold T = @ 6 where & is an estimate
of the standard deviation of the residuals of the inliers and 0 is the same tuning constant as
in Eq.1 (set to 5.0 in our experiments).

The value of & can be obtained in several ways: it can be user provided (6 = o) or
can be computed from the residuals themselves, in a robust way. The second solution is
to be preferred, as it leaves the choice of o, a noncritical step and makes the threshold T’
data-adaptive. We preferred the S, estimator proposed in [23]:

S = ¢ med;(med; (|r; — 1)), ©)

(where r;, i = 1,...,n denotes the residual between the data x; and the considered model) as
a valid alternative to the more common median absolute deviation (MAD), which is aimed
at symmetric distributions, and has a low (37%) Gaussian efficiency, . S, instead copes with
skewed distributions, has the same breakdown as MAD but a higher Gaussian efficiency
(58%).

The factor ¢ can be set to 1.1926 for consistency with a normal distribution, but other dis-
tributions require different values (see [23] for details). In our experiments it has been tuned
heuristically by analysing the distribution of the residuals of inliers given by the ground-
truth. Values are reported in Tab.1.

We noticed that in some cases most of the outliers are assigned to a single segment,
resulting in a contamination greater than 50% that inevitably skews S,. As a guard against
this, S, is computed only on the residuals smaller than 5.00,,.

The model is then refined with a least-squares fit on the inliers, and the threshold T is
computed again to determine the final segmentation.

S5 Experimental evaluation

In this section, we assess experimentally the effectiveness of our algorithm, henceforth
dubbed RPA. All the code is written in Matlab and is available for download'. We used
the inexact ALM code [2], whereas the SymNMF implementation is taken from [16].
Accurately quantifying the performance of multi-model fitting is a difficult task. As men-
tioned en passant in the introduction, the problem has a dual nature, depending on whether
one considers as its output the models (that fit the data) or the segmentation (induced by the

! http://www.diegm.uniud.it/fusiello/demo/rpa/
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models). The evaluation metric changes accordingly. The definition of a similarity mea-
sure between estimated models and ground-truth ones can turn to be an elusive task, for
this reason this problem is usually tackled from the classification point of view and metrics
based on hard assignment are usually adopted. A popular choice is the misclassification error
(ME), which measures the percentage of misclassified point with respect to a ground-truth
segmentation in models and outliers.

Experiment [ ¢ K B

Motion segmentation  0.005 1.53 0.005 100
Planar segmentation ~ 0.013  2.11  0.005 10

Table 1: Parameters used in the experiments. ©, is the overall standard deviation of the
residuals of the inliers, as computed from ground-truth (units refer to normalized image
coordinates). c is the value in Eq.(9) that experimentally provides the best estimate of o,
from S,. Parameters s and 3 refer to [21] and the values are the ones provided by the authors
in their implementation.

k  %out T-lnkg RCMSA RPA k  %out T-lnkg RCMSA  RPA
biscuitbookbox 3 3721 3.10 1692  3.88 unionhouse 5 1878  48.99 2.64 10.87
breadcartoychips 4 3520 1429 25.69  7.50 bonython 1 7513 1192 1779  15.89
breadcubechips 3 3522 3.48 8.12  5.07 physics 1 46.60 29.13 48.87  0.00
breadtoycar 3 3415 9.15 18.29  7.52 elderhalla 2 60.75 10.75 29.28  0.93
carchipscube 3 36.59 4.27 1890  6.50 ladysymon 2 3348  24.67 39.50 24.67
cubebreadtoychips 4  28.03 9.24 1327 499 library 2 56.13 24.53 40.72  31.29
dinobooks 3 4454 2094 23.50 15.14 nese 2 3029 7.05 46.34  0.83
toycubecar 3 3636 15.66 13.81 943 sene 2 4449 7.63 2020 0.42
biscuit 1 5768 1693 1400 1.15 napiera 2 6473  28.08 31.16  9.25
biscuitbook 2 4751 3.23 841 323 hartley 2 6222 2190 37.78 17.78
boardgame 1 4248 2143 19.80 11.65 oldclassicswing 2 3223  20.66 21.30 25.25
book 1 4432 3.24 432  2.88 barrsmith 2 6979  49.79 20.14 36.31
breadcube 2 3219 1931 9.87 4.58 neem 3 3783  25.65 4145 19.86
breadtoy 2 3741 5.40 396 276 -elderhallb 3 49.80 31.02 3578 17.82
cube 1 6949 7.80 8.14  3.28 napierb 3 3713  13.50 29.40 31.22
cubetoy 2 4142 3.77 586 4.04 johnsona 4 2125 3428 36.73  10.76
game 1 7348 1.30 5.07  3.62 johnsonb 7 12,02  24.04 16.46 26.76
gamebiscuit 2 51.54 9.26 9.37  2.57 unihouse 5 1878  33.13 256 521
cubechips 2 51.62 6.14 7.70  4.57 bonhall 6 643 21.84 19.69 41.67
mean 9.36 1237 549 mean 24.66 28.30 17.20
median 7.80 9.87 4.57 median 23.38 29.40 17.53

Table 2: Misclassification error (ME %) for motion segmentation (left) and planar segmen-
tation (right). k is the number of models and % out is the percentage of outliers. All figures
are the average of the middle 3 out of 5 runs.

We deal with two applications of geometric multi model fitting on real data: motion
segmentation and plane segmentation. In the motion segmentation experiments, given two
images of the same scene composed by several objects moving independently, the aim is
to fit fundamental matrices to subsets of point matches. In plane segmentation scenario,
given two uncalibrated views of a scene, the aim is to recover the multi-planar structures
by fitting homographies to point correspondences. The experiments are carried on the Ade-
laideRMF [29] dataset, composed of 38 image pairs (19 for motion segmentation and 19
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for plane segmentation) with matching points corrupted by gross outliers. The ground-truth
segmentations are also available.

We compared RPA with other two state-of-the-art multi-structure geometric fitting ap-
proaches, namely T-Linkage (available at [24]), which uses preference analysis and agglom-
erative clustering, and RCMSA (available at [22]), which relies on an efficient graph cut
clustering based on a label optimization framework.

-

toycubecar (ME=9.43)

x i : - = o
oldclassicswing (ME=25.25) jhonsonb (ME=26.76) library (ME=31.29)

Figure 2: Some of the worst results obtained by RPA on motion segmentation (top row) and
planar segmentation (bottom row). Model membership is colour coded, black crosses (x)
are outliers.

RPA and T-Linkage shared the same biased sampling in the conceptual space: we drew
3n hypotheses by uniform sampling and we used them to instantiate other 3n MSSs according
to Equation (4). In all the experiments & was set to the median of all the Tanimoto distances
between data points.

We provided T-Linkage with the inlier thresholds computed from the ground-truth seg-
mentation for each single image pair, and we retained as inliers the largest & clusters, k being
the correct number of models according to ground-truth. The input parameters of RCMSA
and RPA are reported in Table | and have been kept fixed and equal for all the image pairs
in each experiment.

Results are reported in Tab. 2, and demonstrate that our method outperforms its competi-
tors, obtaining the lowest ME in most cases and the best mean and median results overall.

Some of the worst cases for RPA are reported in Fig. 2. The top row shows the re-
sults of motion segmentation that achieve the highest ME: the quality of the segmentation
is nevertheless acceptable. The situation is different in the bottom row — corresponding to
homography fitting — where three defective segmentations are shown, and the ME is indeed
higher.

In "jhonsonb" the fault is of Symmetric NMF, which fails in finding a correct segmen-
tation of the data, whereas in "library” and in "oldclassicswing" it is the value of o), that is
respectively too low (over-segmentation) and too high (under-segmentation). While there are
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no remedies for the first case, the last two can be cured by a better choice of o,: for example,
the ME drops to 24.53% for "library" and to 0.55% for "oldclassicswing" after assigning to
O, the standard deviation of the residuals of the inliers for that specific image pair.

6 Conclusions

In this paper we argued that preference analysis combined with robust matrix decomposi-
tions provides a versatile tool for robust geometric fitting. We proposed an approach similar
in spirit to classic spectral clustering, with the advantage of being robust to outliers. Our
strategy was to reduce the multi-model fitting task to many single robust model estimation
problems. In particular, we conceived three levels of protection against outliers. The first one
is the adoption of the Cauchy function to model points preferences. The second level appears
in the robust low rank approximation, which gives rise to a soft segmentation where outliers
are under-weighted. Robust extraction of models in a MSAC-like framework, together with
outlier rejection based on robust scale estimates is our third guard against outliers. The value
of 0, and the number of models k are the only inputs required from the user.

Experiments have provided evidence that our method compares favourably with state of
the art competing algorithms.
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