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We address the problem of multi-model fitting in the general context where the
sought structures can be described by a mixture of heterogeneous parametric
models, i.e., of different type or class.
Also referred to as multi-class/multi-model fitting.

Outline of the idea
We assume nested classes: they form a subsumption hierarchy (e.g. lines and
circles, homographies and fundamental matrices).
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Figure 1: Circle A and lines B as nested models.
(a) a circle can describe a set of collinear points,
but it is not uniquely determined. (b) Sampling
with geometric constraints from the segmentation
induced by A . A single point is sufficient to in-
stantiate a line provided that it is tangent to the
underlying circle. (c) The segmentation induced
by B.

The pivotal observation is straightforward. Since
every structure B j can be described by models
in A , we may rewrite B j = cs(Æk) and, in first in-
stance, look for a partition PA of the form X =S

i Ai [
S

k Ak entirely induced by A . This can be
easily obtained with a first run of T-linkage where
the pool of tentative hypotheses is instantiated by
randomly sampling models of type A .

To recover the less complex structures in B, we
can restrict our search to the refinement of the
aforementioned partition PA . Note that it may
happen that some general models explain several
nested structures – such as the circle in Fig. 1
whose consensus set includes the points on the
sides of the octagon. The solution is therefore
to perform T-linkage separately on every A struc-
ture, and then to adopt a model selection criterion
to compare the sub-partitions induced by models

in B internally on each Ai . As an illustration, in
the case of Fig. 1 the model selection is used to
decide between the interpretation of the data pro-
vided by the green circle and the one composed
by the eight lines of the octagon perimeter. More
generally, the model selection problem addressed
here always compares a model of type A with one
or several models of type B.

The pool of tentative models of type B needed
to perform T-linkage are generated enforcing ge-
ometric compatibility with the attained general
models.

Our algorithm, called Multi-class Cascaded T-
linkage or MCT in short, is summarised below.
Points 4,7, and 8 will be expanded in the next
paragraphs.

Algorithm: Multi-class Cascaded T-Linkage
(MCT)

1. Extract models of class A with T-linkage
2. Reject outliers
3. For each A model, perform T-linkage sampling

nested models B compatible with A

4. Solve a model selection problem on each sub-
set

5. Extract models of class B from the outliers with
T-linkage

6. Reject outliers
7. Refine models

Please note that the algorithm does not have to
compare all the possible combinations of type B

models against the whole type A models since,
inside each consensus set of the more general
model, the selection of more specific structures is

performed by the inner T-Linkage, which is also
able to automatically determine the correct num-
ber of instances. The first consensus set and all
its nested structures (as extracted by T-Linkage)
are hence compared through model selection.

Model selection. Several model selection crite-
rion have been proposed in the literature. Let us
call L = °1

2

P°ei

æ

¢2 where ei /æ are the normalised
residuals, and let n be the number of data points,
d the dimension of model manifold, k the number
of model parameters and r the dimension of the
measurement space (where data points belong);
let p = dn+k the total number of parameters to be
estimated.

GRIC °2L+∏1dn +∏2k

When `∏ 2 type B models are compared against
one type A model, the score is computed substi-
tuting k with `k to account for the actual number
of parameters.

In our experiments we set ∏1=1 and adjusted ∏2

as reported in Tab. 1.

Table 1: Model selection parameters

k d r ∏1 ∏2

Line 2 1
2 1 3

Conic 3 1

Plane 4 2
3 1 4

Cylinder 5 2

Fundamental 7 3
4 1 2.5

Homography 8 2

Outlier rejection. Following the route of the a-
contrario approaches, outlying models are pruned
using the statistical validation technique de-
scribed in [?]. In the most simple terms, if there
are n inliers at a distance ≤ from a model, assum-
ing a local uniform distribution of the residuals, we
expect to have on average ∑ times more elements
at a distance ∑≤. If this does not hqold, the model
has a very low probability of occurring by chance
and can be retained as inliers.

Refinement. A final refinement step is carried
out with the double goal of removing small models
subsumed by a larger one, that may occasionally
arise, and reassigning points to models in such a
way that the result is not a partition of the points
but a cover, which is a more appropriate output
for multi-model fitting, as argued in [?].

With these aims, we re-assign the inlier points to
the models produced by the previous step (each
point is assigned to the models for which it is an
inlier) and then solve a set cover problem in a
greedy fashion, selecting the models in decreas-
ing cardinality order, until all the inlier points have
been covered by at least one model.

2. Experimental validation
This section is devoted to investigating the per-
formances of MCT in several multi-class model
fitting tasks, namely 2D and 3D primitive-fitting
problems (in Sec.2.1 and 2.2 respectively) and
two-views motion segmentation (Sec. 2.3). The
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Figure 1: Hierarchical interpretation of data.

Let us consider two classes, namely A and B.

• Let A be the more “general” class, in the sense that the structures of class
B can be also described in terms of models of type A without impacting data
fidelity.
On the other hand, there are instances in A that can not be explained by means
of a unique model of B keeping the same level of accuracy.

• Since every structure of type B can be described by models in A , we may
in first instance obtain the segmentation induced by A .
This can be easily obtained with a first run of T-linkage where the pool of tenta-
tive hypotheses is instantiated by randomly sampling models of type A .
To recover the structures of type B, we can restrict our search to the refinement
of the partition induced by A .

• The solution is to perform T-linkage separately on every A structure, and
then to adopt a model selection criterion to compare a model of type A with
one or several models of type B.
The pool of tentative models of type B needed to perform T-linkage are gener-
ated enforcing geometric compatibility with the type A models (e.g. tangency).

Figure 2: Tentative lines in circular structures
are instantiated by sampling individual points
and enforcing the direction of tangency with the
circumference.

The algorithm

Algorithm: Multi-class Cascaded T-Linkage (MCT)
1. Extract models of class A with T-linkage
2. Reject outliers
3. For each A model
(a) Extract sub-model(s) of class B with T-linkage,

sampling models B compatible with A

(b) Model selection A vs sub-model(s) B

4. Extract models of class B from the outliers with T-linkage
5. Reject outliers
6. Run a greeedy set-cover

T-linkage (1, 3(a), 4). A single class multi-model fitting algorithm based on a
first-represent-then-clusterise scheme: at first, the input data are represented
by the “preferences” they grant to a pool of provisional model hypotheses ob-
tained by random sampling, then a greedy bottom-up agglomerative clustering
is performed to yield a partition of the data merging points with similar prefer-
ences according to the Tanimoto distance [3].

Model selection (3(b)). Let us call L =−1
2

∑(ei

σ

)2 where ei /σ are the normalised
residuals, and let n be the number of data points, d the dimension of model
manifold, k the number of model parameters and r the dimension of the mea-
surement space (where data points belong); let p = dn +k the total number of
parameters to be estimated.

GRIC=−2L+λ1dn +λ2k

When `≥ 2 type B models are compared against one type A model, the score
is computed substituting k with `k to account for the actual number of parame-
ters. In our experiments we set λ1=1 and adjusted λ2.

Outlier rejection (2,5) Following the route of the a-contrario approaches, out-
lying models are pruned using the statistical validation technique described in
[4]. In the most simple terms, if there are n inliers at a distance ε from a model,
assuming a local uniform distribution of the residuals, we expect to have on av-
erage κ times more elements at a distance κε. If this does not hqold, the model
has a very low probability of occurring by chance and can be retained as inliers.

Greedy set cover (6). Re-assign the inlier points to the models produced by
the previous step (each point is assigned to the models for which it is an inlier)
and then solve a set cover problem in a greedy fashion, selecting the models in
decreasing cardinality order, until all the inlier points have been covered by at
least one model. The result is not a partition of the points but a cover.

Comments

• MCT sequentially extract simpler nested models starting form the more gen-
eral ones. In this way, all the intra-class model selection problems are implicitly
solved by T-linkage, whereas the inter-class model selection issues is cast into
an explicit comparison of GRIC scores among models explaining the same data.

• This means that MCT does not have to compare all the possible combina-
tions of type B models against the whole type A models

• In principle, T-linkage could be used to extract a segmentation from a multi-
class soup of heterogeneous models, but in this way one cannot recover the
models underlying the clustering, as the class of the models are lost during the
clustering fusion, in much the same way as in [5].

• The model selection framework is simple and in principle is agnostic about
the multi-model fitting technique adopted. In practice it can be generalised
to other preference based multi-model fitting algorithm which can benefit from
model-constrained sampling.

Results
The inlier threshold ε and λ2 have been tuned per-problem (i.e., they are con-
stant across istances of the same problem).

Line and conic fitting In Tab. 1 MCT is contrasted with PEARL [2] in terms
of misclassication error (ME). Both methods were given the same preference
matrix as input and results come from a single run; the parameters of both have
been tuned to achieve the best results and kept fixed in all instances.

Figure 3: Line and conic fitting on "blueprint-like" synthetic data. Top row:
input data. Bottom row: detection of multiple lines and circles by MCT.

PEARL [2] 8.05 8.33 17.38 19.21
MCT 5.23 7.12 5.38 6.23

Table 1: ME (%) for line and conic fitting instances of Fig. 3.

Plane and cylinder fitting Results on plane and cylinder fitting are presented
in Fig. 4. The first two point clouds come from the Aim@Shape repository.

The benefits of the the final refinement with set cover are shown in the bridge
example, where portions of the pier have been fitted with cylinders which how-
ever ended up to be redundant because they were already covered by the plane
that fitted the rest of the facade of the bridge. In the other two cases the refine-
ment brought no visible improvement.

Class assignment Model assignment

Figure 4: Plane and cylinder fitting by MCT on 3D point clouds. Class/model
assignment is color coded. For the bridge the class/model assignment is show
before (top) and after (bottom) the final refinement with set cover.

Homography and fundamental matrix fitting We used the "cube*" subset
of the AdelaideRMF motion dataset, consisting of 8 image pairs depicting a
cube and other objects. We manually labelled correspondences according to
the face of the cube they belong to, in order to have a true multi-class problem,
where homographies (cube faces) and fundamental matrices (other objects)
coexist, and the homographies are subsumed by a fundamental model.

Multi-H Multi-X T-lnkg MCT

mean 14.35 9.72 6.60 6.13
median 9.56 2.49 4.68 4.93

Table 2: ME (%) on AdelaideRMF for multiple homography fitting. The first
two columns are copied from [1].

ME 5.58% ME 3.05% ME 1.08% ME 6.69%

ME 6.52% ME 10.61% ME 5.90% [ME 3.82%

Figure 5: Homography and fundamental matrix fitting by MCT on cube*
image pairs. Odd rows: first input image with outlier-contaminated points over-
laid. Even rows: F and H models superimposed on the second image. The
mean run time per image pair is 21s in Matlab on 2.6 GHz i7 machine.

Following the same protocol used in [1], we applied MCT to a single class prob-
lem, namely multiple homography fitting on the AdelaideRMF homography
dataset, consisting of 19 image pairs with ground truth point correspondences
assigned to planes (homographies). In order to bias MCT toward homographies
we set λ1 = 500 and λ2 = 0 in this experiment.

In this case MCT works almost like regular T-linkage, except a first clustering is
made with F matrices that biases the subsequent sampling of homographies.

The Matlab code of MCT is available on-line (QR-code below)
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