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Abstract

This paper deals with the problem of recovering the un-
known norm of relative translations between cameras based
on the knowledge of relative rotations and translation direc-
tions. We provide theoretical conditions for the solvability
of such a problem, and we propose a two-stage method to
solve it. First, a cycle basis for the epipolar graph is com-
puted, then all the scaling factors are recovered simultane-
ously by solving a homogeneous linear system. We demon-
strate the accuracy of our solution by means of synthetic
and real experiments.

1. Introduction
In this paper we deal with the Epipolar Scales Compu-

tation (ESC) problem, namely the problem of recovering
(up to a global scale factor) the unknown norms – also re-
ferred to as epipolar scales – of the relative translation di-
rections extracted from the essential matrices. In fact, only
the translation directions can be computed from the epipolar
geometries, but not their norms, owing to the well-known
depth-speed ambiguity. The problem can be usefully mod-
eled by considering the epipolar graph, where nodes are
the images and edges correspond to epipolar relationships
between them.

The only solution in the literature [25] considers graphs
with a special structure. This paper presents a more general
technique, together with a formal analysis of the conditions
under which the ESC problem is solvable.

The ESC problem finds application in Structure-from-
motion (SfM), namely the problem of recovering 3D struc-
ture (of the scene) and motion (of the cameras) from point
correspondences. A paradigm which is gaining increasing
attention in the community consists in first computing the
relative motion of all the cameras and then deriving their
absolute position and angular attitude by considering the
whole epipolar graph at the same time.

Almost all these global techniques [7, 15, 1, 16, 18] first
solve for rotations and then for translations. The problem of

the unknown norms is bypassed either by exploiting implicit
or explicit point triangulation (e.g. [1, 23, 5, 11, 15, 19]),
or by solving a bearing-only network localization (e.g. [7,
4, 10, 16, 18]), where the relative translation directions ex-
pressed in an absolute frame are regarded as bearing mea-
sures that globally constraint the position of the cameras.
Conditions under which positions are recoverable are stud-
ied in [18] and they refer to the concept of parallel rigidity
[22]. The ESC problem is very related to this one, although
there are some differences: in the ESC problem the input are
relative rotations and relative translation directions, and the
output are relative distances among cameras; in the bearing-
only network localization problem the input are absolute ro-
tations and relative translation directions, and the output are
absolute positions of the cameras.

A different approach to global SfM consists in recover-
ing rotations and translations simultaneously, by working
on the manifold of rigid motions SE(3). This approach, al-
though being more principled, is less explored, probably
due to the lack of a general solution to the ESC problem.
Indeed, essential matrices do not fully specify elements of
SE(3), due to the scale ambiguity in the relative translations.
The only approach of this type present in the literature is
the iterative solution in [8], where the ESC problem is over-
looked, though, since at each iteration the current estimates
of the absolute motions are used to fix the scales of the cor-
responding relative translations.

In this paper we provide theoretical conditions that guar-
antee solvability of the ESC problem, and we propose a
two-stage method to solve it. First, a cycle basis for the
epipolar graph is computed, then all the scaling factors are
recovered simultaneously by solving a homogeneous linear
system. The key observation is that the compatibility con-
straints associated to cycles can be seen as equations in the
unknown scales. Thus the ESC problem is cast to the reso-
lution of a single linear system, and solvability depends on
the algebraic properties of the coefficient matrix.

We consider two variants of our method, which differ for
the algorithm used to obtain a cycle basis, namely comput-
ing a Fundamental Cycle Basis (FCB) or a Minimum Cycle
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Basis (MCB). Experiments on synthetic and real data show
that they both recover the epipolar scales accurately, and the
lowest errors are obtained when using a MCB. Moreover, a
MCB can be made resilient to outliers, which pays back for
its higher computational cost.

The paper is organized as follows. First, we define the
ESC Problem (Section 2) and we introduce the background
necessary to address it (Section 3). Theoretical results about
unique solvability of the problem are discussed in Section 4,
and the derived method is detailed in Section 5. Finally, we
evaluate the performances of our contributions to the ESC
Problem via experiments on synthetic and real data (Section
6).

2. Problem Definition

Consider n pinhole cameras that capture the same (sta-
tionary) 3D scene. Let Mij denote the relative transforma-
tion between cameras i and j, which can be represented as
an element of the Special Euclidean Group SE(3), namely
the semi-direct product of the Special Orthogonal Group
SO(3) with R3. Accordingly, each relative transformation
can be expressed as

Mij =

(
Rij tij
0 1

)
(1)

where Rij ∈ SO(3) and tij ∈ R3 respectively denote the
relative rotation and translation between coordinate frames
indexed by i and j.

Suppose that only some Mij are known, represented by
index pairs (i, j) in a set E ⊆ {1, 2, . . . , n}×{1, 2, . . . , n}.
Let G = (V, E) denote the epipolar graph (also known as
the viewing graph [14]), which has a vertex for each cam-
era and edges in correspondence of the available pairwise
transformations. G is a directed finite simple graph with a
labeling of its edge set by elements of SE(3)

Λ : E → SE(3), Λ(i, j) = Mij (2)

such that if (i, j) ∈ E then (j, i) ∈ E , and
Λ(j, i)=Λ(i, j)−1. Hence, G may also be considered as an
undirected graph. Let m denote the cardinality of E , i.e. the
number of edges of the underlying undirected graph.

In practice, the relative transformationsMij are obtained
by factorizing the essential matrices, which are computed
from a collection of point matches across the input images.
Each essential matrix is known up to scale due to the depth-
speed ambiguity. Therefore, there is a scale ambiguity in the
relative translations, i.e. what can be extracted are the rela-
tive translation directions t̂ij = tij/‖tij‖. In other words,
the scale factors αij = ‖tij‖ of the relative translations are
unknown. Note that the number of such unknowns is m
since ‖tij‖ = ‖tji‖.

The goal here is to reduce all the unknown scaling factors
of the relative translations into a single global scaling factor,
which cannot be eliminated. In other words, the present
work addresses the following problem.

Epipolar Scales Computation (ESC) Problem. Given the
relative rotations Rij ∈ SO(3) and relative translation di-
rections t̂ij ∈ R3 for (i, j) ∈ E , compute the scaling factors
αij = ‖tij‖ of the relative translations up to a single global
scaling factor1.

In particular, the questions are: under which assumptions
the ESC Problem admits solution, and which algorithm can
solve it. A pair (G,Λ) for which it is possible to solve the
ESC problem is called a solvable epipolar graph.

3. Background
In this section we review some useful concepts from

graph theory [12], and we describe the Zeller-Faugeras
method [25], of which our method is a generalization.

3.1. Cycle Bases

Consider a finite simple graph G = (V, E), where V is
the set of vertices (or nodes) of cardinality n and E is the
set of edges of cardinality m. If the edges are ordered pairs
of vertices then G is a directed graph, otherwise G is an
undirected graph. A weighted graph is a graph together
with a weight function w : E → R+.
G is called connected if there exists a path from each

vertex to any other. G is called biconnected if it has no
articulation points, where a vertex v ∈ V is an articulation
point if G \ {v} is disconnected. A graph is a tree if it is
connected and it has n−1 edges. A subgraph of a connected
graph G is called a spanning tree if it has the same vertices
of G and it is a tree. A single spanning tree of a graph can be
found in linear time O(m + n) by either depth-first search
or breadth-first search.

A cycle in an undirected graph is a subgraph in which
every vertex has even degree, where the degree of a ver-
tex is the number of times that the vertex occurs as
the endpoint of an edge. A cycle is a circuit if it is
connected and every one of its vertices has degree two.
In this paper we use the notation (i1, i2, . . . , iN−1, iN )
to denote the N -length circuit formed by the edges
{(i1, i2), (i2, i3), . . . , (iN−1, iN ), (iN , i1)}.

If C1, . . . , Ck are cycles of G, then the sum of cycles
C1 ⊕ · · · ⊕ Ck is defined as the cycle consisting of all the
edges that are contained in an odd number in the cycles
Ci, as illustrated in Figure 1. A cycle basis is a minimal
set of circuits such that any cycle can be written as linear
combination of the circuits in the basis. Viewing cycles as

1Please note that when referring to a “unique” solution to the ESC prob-
lem we will include the global scale indeterminacy.
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vectors indexed by edges, addition of cycles corresponds to
modulo-2 sum of vectors, and the cycles of a graph form a
vector space in GF (2)m. The dimension of such a space
is m − n + cc, where cc denotes the number of connected
components in G.
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Figure 1: The sum of two cycles is a cycle where the com-
mon edges vanish.

If G is connected and T is any arbitrary spanning tree of
G, then adding any edge from G \ T to T will generate a
circuit. The set of such circuits forms a cycle basis, which
is referred to as fundamental cycle basis (FCB). This sim-
ple technique for extracting a cycle basis is summarized in
Algorithm 1 and it runs in O(m+ n) time.

Algorithm 1 Spanning tree

Input: Connected graph G = (V, E)
Output: Fundamental Cycle Basis B

1. Initialize B = ∅.

2. Compute a spanning tree T .

3. for (x, y) ∈ E \ T do
Create the cycle C(x, y) = P (x, y) ∪ (x, y),
where P (x, y) is the shortest path in T between
x and y. Add C(x, y) to B.

4. end for

The length of a cycle is either the number of edges in
the cycle (in unweighted graphs) or the sum of the weights
of the edges in the cycle (in weighted graphs). A minimum
cycle basis (MCB) is a basis of total minimum length. In
general a MCB is not unique. Horton’s algorithm [9] finds a
MCB in polynomial time, requiring at most O(m3n) steps,
assuming that the underlying graph is biconnected. This
method is described in Algorithm 2. The last step in Algo-
rithm 2 can be implemented by applying Gaussian elimina-
tion to a 0, 1-matrix whose rows are the vectors in GF (2)m

corresponding to the cycles generated in Step 2. Figure 2
outlines the difference between MCB and FCB.

Algorithm 2 Horton

Input: Biconnected graph G = (V, E)
Output: Minimum Cycle Basis B

1. Find the shortest path P (x, y) between each pair of
vertices x, y ∈ V .

2. for v ∈ V do
for (x, y) ∈ E do

Create the cycle C(v, x, y) = P (v, x) ∪
P (v, y) ∪ (x, y) and calculate its length. De-
generate cases in which P (v, x) and P (v, y)
have vertices other than v in common can be
omitted.

end for

3. end for

4. Order the cycles by increasing lengths.

5. Initialize B = ∅. Add to B the next shortest cycle if
it is independent from the already selected ones.
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(a) Epipolar graph.
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(c) Fundamental cycle basis associated to the spanning tree
T = {(1, 2), (2, 3), (3, 4), (4, 5)}.

Figure 2: Example of a MCB and a FCB for a given epipolar
graph. In general, the latter is composed of longer cycles.

3.2. Zeller-Faugeras method

Our method for solving the ESC Problem is inspired by
[25], where the authors derive the scale factors from the
composition of rigid motions.

If we consider a sequence of n images, whose epipolar
graph is represented in Figure 3, then the following compo-
sitional rule holds

t1i = R12t2i + t12 (3)
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which is equivalent to

α1it̂1i = α2iR12t̂2i + α12t̂12. (4)

This leads to the following solution for the ratios of the scale
factors

α12

α1i
=

(R12t̂2i × t̂1i)
T(R12t̂2i × t̂12)

‖R12t̂2i × t̂12‖2
. (5)

More precisely, if we arbitrarily fix the value of (e.g.) α12,
then we can compute the remaining scaling factors α1i by
using the equations above. The arbitrary choice of α12 cor-
responds to the global scaling factor, which can not be com-
puted without external measurements.

1 2 n
......

3 4

1

2

3

4
.....
.

n

Figure 3: The epipolar graph corresponding to the Zeller-
Faugeras method [25]. It is made of n− 2 circuits of length
3 all sharing a common edge.

Our method can be seen as an extension of this approach
to general epipolar graphs, with a formal analysis of the
conditions that guarantee solvability.

4. Theoretical Results
In order to address the ESC Problem, we consider the

composition of pairwise motions along circuits, which must
return the identity transformation.

We observe that it is impossible to solve the ESC Prob-
lem in the presence of edges not belonging to any cycle.
Indeed, the norm of such edges can be chosen arbitrarily
without any impact on the other scales, since they are not
constrained by other edges. For this reason we assume that
each edge in E belongs to (at least) one cycle, namely the set
of edges associated to a cycle basis coincides with E itself.
Such a graph is also called bridgeless.

4.1. A single circuit

For simplicity of exposition, we first consider the case
where the epipolar graph consists of a single circuit C of
length N ≥ 3, e.g. C = (1, 2, . . . , N − 1, N). The com-
position of the pairwise motions along C yields the 4 × 4
identity matrix, namely

M12M23 . . .MN−1,NMN1 = I. (6)

Note that this equation is written by traversing the cycle in
a given order (clockwise or anti-clockwise) while consid-
ering the directed epipolar graph. Equation (6) is called

the compatibility constraint, and it can also be expressed as
M12M23 . . .MN−1,N = M1N . Considering separately the
rotation and translation terms, it results in

R12R23 . . . RN−1,N = R1N (7)

α12t̂12 +

N−1∑
k=2

(

k−1∏
i=1

Ri,i+1)αk,k+1t̂k,k+1 = α1N t̂1N (8)

where the relation between translations can be viewed as a
homogeneous linear equation in the unknown scales. Note
that the Zeller-Faugeras method considered the compatibil-
ity constraint for N = 3.

Equation (8) can also be expressed in terms of dif-
ferences between the camera centers (i.e. the baselines),
if the absolute rotations of the cameras are known. Let
R1, . . . , Rn ∈ SO(3) denote the absolute rotations, let
bij ∈ R3 denote the baseline joining the optical centers of
cameras i and j, and let b̂ij ∈ R3 denote the versor of the
baseline bij . Using this additional information, the prod-
uct of relative rotations in (8) reduces to R1R

T
k . Indeed, the

link between relative and absolute rotations in encoded by
the formula Rij = RiR

T
j , thus all the factors in (8) sim-

plify except of the first and the last one. By multiplying
both sides by −RT

1 , we obtain

−α12R
T
1 t̂12 −

N−1∑
k=2

αk,k+1R
T
k t̂k,k+1 = −α1NR

T
1 t̂1N (9)

which coincides with
N−1∑
k=1

αk,k+1b̂k,k+1 = α1N b̂1N (10)

since the baselines are related to the relative translations
through the formula bij = −RT

i tij . Note that the base-
line versor can be viewed as the direction of the relative
translation expressed in the absolute reference frame. For
this reason, we can also regard b̂ij as the bearing of camera
j as seen from camera i.

We now discuss under which conditions Equation (8)
gives means to compute the unknown scaling factors αij

(up to a global scale). Let A ∈ R3×N be the coefficient
matrix associated to Equation (8), whose entries depend
on the relative rotations and translation directions, and let
α ∈ RN be the stack of the scales αij . Using this no-
tation, the compatibility constraint reduces to a homoge-
neous linear system of the form Aα = 0. Thus the ESC
Problem admits a unique non-trivial solution – that corre-
sponds to the one-dimensional null space of A – if and only
if rank (A) = N − 1. Moreover, we have rank (A) ≤ 3,
since A is a 3 × N matrix. Thus, in a circuit of length N
the ESC problem can be solved uniquely only if N ≤ 4.

Observe that specific motions cause rank (A) to drop. In
particular, rank (A) = 1 if and only if the camera centers
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are collinear and rank (A) = 2 if and only if the camera
centers lie on a common plane.

This implies that for N = 4 the ESC problem has a
unique solution provided that the cameras are in a general
position, otherwise multiple solutions are possible. On the
contrary, for N = 3, the camera centers must be coplanar
(as it is the case if we assume correct measurements), oth-
erwise the problem admits only the trivial solution α = 0.
If the centers are collinear then multiple solutions arise.

4.2. A generic epipolar graph

We now consider a generic epipolar graph, providing
conditions for the ESC Problem to admit a unique solution.
We have just shown that – if G is formed by a single circuit
– it is possible to recover the epipolar scales if and only if
its length is 3 or 4 (provided that the cameras are in a gen-
eral configuration). Thus a circuit of length N ≥ 5 is not
solvable alone, because the associated linear system yields
multiple solutions. However, when several cycles are con-
sidered in a generic epipolar graph, it might be possible to
recover the scaling factors also in the presence of circuits of
length N ≥ 5.

To see this, consider the case of Figure 4a. The key ob-
servation is that the 5-length circuit has two edges in com-
mon with a solvable subgraph of G. Specifically, the epipo-
lar scales can be recovered as follows by considering the
circuits (1, 6, 2), (2, 6, 7), (2, 7, 3) and (1, 2, 3, 4, 5). First,
we arbitrarily choose the scaling factor of an edge of the cir-
cuit (1, 6, 2), and compute the remaining scales by solving
the associated linear system, which has a unique solution
since it has length 3. This cycle shares the edge (2, 6) with
the 3-length circuit (2, 6, 7). We use such an edge to fix
the global scaling factor of (2, 6, 7), and solve for the re-
maining scales. The same happens when considering the
3-length circuit (2, 7, 3). In this way the scales of the edges
(1, 2) and (2, 3) are already determined when considering
the 5-length circuit (1, 2, 3, 4, 5), and only 3 unknowns re-
main, which can be recovered as in a circuit of length 4.

1

2

34

5 7

6

(a) The epipolar graph contains
a circuit of length 5.

1

2

3

5

4

(b) The epipolar graph is
not biconnected.

Figure 4: Examples of a solvable epipolar graph (left) and
of an unsolvable epipolar graph (right).

An example of an unsolvable epipolar graph is reported
in Figure 4b, where the graph is not biconnected. The cir-

cuits (1,2,3) and (2,4,5) do not have any edge in common,
thus we can solve separately the ESC Problem for each cir-
cuit, but two unknowns remain which can not be reconciled
to a single global scaling factor. It is straightforward to see
that this generalizes to all the situations where articulation
points are present, as mentioned also en-passant in [16]. In
other words, the following proposition holds.

Proposition 1. The ESC Problem admits a unique solution
only if the epipolar graph is biconnected.

Note that the requirement of being biconnected avoids
both the situation of Figure 4b and the presence of edges
not belonging to any cycle (biconnected⇒ bridgeless).

It is straightforward to see that the necessary condition
of Proposition 1 is not sufficient. (For instance, a single
5-length circuit is biconnected but the associated linear sys-
tem admits multiple solutions). However, it gives a simple
condition to detect non solvable graphs. Accordingly, if the
epipolar graph is not biconnected, then our analysis applies
to the largest biconnected component of G.

We now provide a necessary and sufficient condition for
the ESC Problem to admit solution. Let r be the total num-
ber of circuits present in the graph G. Each circuit gives
rise to a homogeneous linear equation of the form (8). All
these equations can be stacked together to form a matrix A
of dimensions 3r×m, whose entries depend on the relative
rotations and translation directions. Each triplet of rows in
A corresponds to a circuit, while each column corresponds
to a relative translation. In this way all the edges are con-
sidered (since each edge belongs to at least one cycle by
assumption) and all the existing constraints on the scales
are taken into account (since we are considering all the cir-
cuits).

Thus the ESC Problem is equivalent to the resolution of
a single homogeneous linear system

Aα = 0 (11)

where α ∈ Rm is the stack of the scaling factors αij . In
other terms, unique solvability depends on the algebraic
properties of the coefficient matrix A. More precisely,
the ESC problem admits a unique solution if and only if
nullity (A) = 1, i.e. if and only if rank (A) = m − 1.
Such a solution is the 1-dimensional null-space of A, and it
can be found by computing the eigenvector with zero eigen-
value of the matrix ATA. This discussion is summarized in
the following proposition.

Proposition 2. Let A ∈ R3r×m be the coefficient matrix
constructed by stacking the compatibility constraints asso-
ciated to all the circuits in G, where r is the number of such
circuits. Let α ∈ Rm be the stack of the scales αij . The
ESC problem admits a unique (non-trivial) solution if and
only if rank (A) = m− 1.
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Note that if an articulation point is present – as in the
case of Figure 4b – then the matrixA can be partitioned into
two independent blocks having both rank maximum minus
1. Thus the rank of the whole matrix is m− 2, i.e. the ESC
Problem admits multiple solutions, according to Proposi-
tion 1.

Local vs global frames. Equation (11) can also be written
in terms of the baselines (or bearings), generalizing Equa-
tion (10). In fact, the equation provided by a circuit Ck can
be expressed as

B diag(c>k ) α = 0 (12)

where ck is them×1 indicator vector of the circuit Ck, and
B is a 3×mmatrix whose columns are the baseline versors.
Please note that this equation is written by traversing Ck

in an arbitrary cyclic order (clockwise or anti-clockwise),
hence the entries of ck have a sign that indicates whether the
corresponding edge is traversed along the direction speci-
fied by its versor (the k-th column of B), or not.

Equivalently, we can use the Khatri-Rao [13] product �
and write

(c>k �B) α = 0. (13)

In this way we can stack the equations coming from r > 1
circuits, obtaining

(C �B) α = 0 (14)

where C is the r ×m stack of the rows c>k .
Please observe that the matrix (C � B) is not equal to

A, but it has the same size and the same null-space (in the
noise-free case). Each row in A is of the form

(c>k �−RkB) α = −Rk(c>k �B) α = 0 (15)

where Rk is a rotation that takes into account the fact
that in each circuit an arbitrary local reference system has
been considered. Hence, there exists a choice of rotations
R1, . . . , Rm such that−R1(c>1 �B)

...
−Rm(c>m �B)

 =

−R1

. . .
−Rm

 (C�B) = A.

(16)
In summary, the equations involving the bearings and

those involving the relative motions are equivalent in terms
of constraints on the solution, however they configure two
different approaches. The bearings in (12) require to com-
pute the absolute rotations before the scale factors, and the
problem gets very close to the bearing-only network local-
ization. On the other hand, the equations in (11) – which
give our solution to the ESC problem – are written with

respect to independent local frames, thereby avoiding the
need to solve for the absolute rotations beforehand.

Nevertheless, it might be sometime useful to express the
constraints in the “bearing form”, for it simplifies the dis-
cussion, as in the following paragraph.

How many circuits? As a matter of fact, considering all
the circuits is redundant. The following result states that
what is actually required is a set of independent circuits.

Proposition 3. Let C1, C2, C3 be three circuits in G that
satisfy C1⊕C2 = C3. Then the equation obtained from the
circuit C3 is a linear combination of the equations obtained
from the circuits C1 and C2.

Let us consider two circuits C1 and C2 that share one or
more edges, and let c1, c2 be their signed indicator vectors.
The sum of the equations derived from C1 and C2 writes

B diag(c>1 + c>2 )α = 0. (17)

Without loss of generality let us assume that C1 and C2 are
traversed with a cyclic order such that the common edges
to C1 and C2 are traversed in opposite directions, as in the
case of Figure 5. Thanks to this assumptions the entries
corresponding to common edges vanishes in (c>1 +c>2 ), and
this is exactly the signed indicator vector of C1 ⊕ C2.
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Figure 5: Sum of two circuits where the edge in common is
traversed in opposite directions.

Thus, including a circuit which is the sum of other cir-
cuits does not add any independent constraint on the scaling
factors.

5. Proposed Method
An immediate consequence of Proposition 3 is that we

can consider a cycle basis rather than the set of all the cir-
cuits in Equation (11). Thus the epipolar scales can be re-
covered through the following steps.

1. Compute a cycle basis B for the epipolar graph by us-
ing either Algorithm 1 or Algorithm 2.

2. Construct the 3(m− n+ 1)×m coefficient matrix A
by stacking the compatibility constraints associated to
the cycles in B. If rank (A) = m−1 then compute the
unknown scales by solving system (11). Otherwise,
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it is impossible to find a unique solution to the ESC
Problem.

In this way, all the translation norms are recovered simulta-
neously (up to a global scale) by solving a single homoge-
neous linear system. Note that in order to guarantee solv-
ability of the ESC problem, the number of rows in A must
be greater than (or equal to) m − 1, i.e. the following nec-
essary condition must be satisfied

m ≥ 3

2
n− 2. (18)

In the presence of noise unique solvability reduces to test
ifA has approximately rankm−1. In this case, system (11)
is solved in the least-squares sense, by computing the least
eigenvector of the matrix ATA, or – equivalently – the least
right singular vector in the Singular Value Decomposition
(SVD) of A.

Note that system (11) is sparse, since each row contains
exactly N non-zero entries, if N is the length of the cur-
rent circuit. Thus employing sparse eigen-solvers (such as
MATLAB eigs) increases the efficiency of the method.

Which cycle basis? In the ideal (noise-free) case any cy-
cle basis returns the desired solution. Thus the question is
which basis is more suitable to our application when rel-
ative rotations and translation directions are corrupted by
noise and outliers.

Intuitively, the performances of our method with respect
to noise are better when using the shortest circuits, because
this limits error accumulation. Therefore a MCB (Algo-
rithm 2) should be preferred, because a MCB is character-
ized by the property that no circuit can be the sum of shorter
circuits [21]. This does not hold for a fundamental cycle ba-
sis, which in general is composed of longer circuits.

Another advantage of using Algorithm 2 is that it can
easily incorporate robustness to outliers among relative mo-
tions. Specifically, we take advantage of the redundancy of
circuits generated in Step 2, without increasing the compu-
tational cost.

We say that a circuit in the epipolar graph is null if the
composition of the relative rotations along it is equal to the
identity. Non null circuits arise when one or more edges are
outliers, they provide inconsistent constraints on the epipo-
lar scales, and thus they cannot be part of the cycle basis.
As a consequence, we modify Algorithm 2 by considering
only null circuits in Step 2, while the remaining cycles are
discarded.

In particular, a circuit C = (1, 2, . . . , N − 1, N) gener-
ated in Step 2 of Algorithm 2 is kept if the following condi-
tion is satisfied

d(R12R23 . . . RN−1,NRN1, I) ≤ ε
√
N (19)

where d(·, ·) : SO(3)×SO(3) 7→ R+ is a bi-invariant met-
ric and ε is a given threshold. Note that this is an heuristic
for finding a cycle basis for a consistent subgraph of G, i.e.
a subgraph containing only null cycles. Thus the number
of circuits returned by this version of Algorithm 2 will be
lower than m− n+ 1, in general.

Compared to Algorithm 1, Horton’s algorithm has a
higher computational cost, but this is balanced by increased
accuracy and the possibility to discard outliers while com-
puting the cycle basis. In contrast, Algorithm 1 gener-
ates only a minimum set of circuits, thus robustness can
be achieved only by rejecting outliers before computing the
basis. Available approaches for detecting outliers include
[24, 17, 6, 16, 3, 23]. These techniques are computationally
demanding and speed is always traded off with accuracy.
Moreover, some of them [24, 6, 16, 3] are based anyway on
the detection of non-null cycles.

6. Experiments

In this section we evaluate our approach on synthetic
and real data, analyzing both accuracy and robustness to
outliers. All the experiments are performed in Matlab on
a dual-core 1.3 GHz machine. The code is available at
www.diegm.uniud.it/fusiello/demo/gmf/.

Synthetic Data. We consider n = 100 cameras where ab-
solute rotations Ri ∈ SO(3) are sampled from random Eu-
ler angles, and the x, y, z-components of absolute transla-
tions ti ∈ R3 follow a standard Gaussian distribution. The
edge set E of the epipolar graph is sampled at random. The
available pairwise motions are computed as Rij = RiR

T
j

and tij = −RiR
T
j tj + ti. All the instances simulated cor-

respond to solvable epipolar graphs. The relative transla-
tion directions tij/‖tij‖ are corrupted by noise considering
their representation in spherical coordinates, so as to remain
on the unit sphere. Specifically, the spherical angles are
corrupted by additive Gaussian noise with zero mean and
standard deviation σ ∈ [0.5◦, 5◦]. The same perturbation is
applied to the relative rotations, considering the angle-axis
representation of SO(3). All the results are averaged over
10 trials.

Theoretically, the estimated scales α̃ should coincide
with the ground truth ones α up to a multiplicative constant
s ∈ R, namely α = sα̃. We estimate such a constant in the
least-squares sense, and we divide the mean of the residuals
rij = |αij − sα̃ij | by the mean of α, to obtain a relative
mean error on the scaling factors.

Figure 6 reports the relative mean errors on the epipo-
lar scales as a function of σ. In this experiment we evalu-
ate both Algorithm 1, in which a fundamental cycle basis
(FCB) is extracted, and Algorithm 2, in which a minimum
cycle basis (MCB) is computed. The former is highly de-
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Figure 6: Relative mean error on the scale factors vs standard deviation of noise, for different percentages of missing pairs.
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Figure 7: Relative mean error on the scale factors vs fraction of outliers, for different percentages of missing pairs.

pendent on the chosen spanning tree, thus for each trial we
further average the results over 10 spanning trees simulated
at random.

Both our methods give an accurate solution to the ESC
Problem as noise increases, however the best resilience to
noise is achieved by the MCB, as conjectured in the previ-
ous section. In the case of 90% of missing data (right sub-
figure) the graph is very sparse and the effect of randomness
is amplified, thus producing irregular lines.

We now study the resilience to outliers of our variant of
Algorithm 2 – henceforth dubbed “Null MCB” (N-MCB) –
in which only null cycles are kept in Step 2. In this experi-
ment we consider a fixed level of noise (σ = 3◦), while the
fraction of wrong relative motions – randomly generated –
varies from 5% to 50%. This percentage refers to the avail-
able pairwise motions (not to the complete epipolar graph),
i.e. the number of outliers is a fraction of m.

Figure 7 reports the relative mean errors on the epipo-
lar scales as a function of the fraction of outliers, obtained
by MCB and N-MCB. While the former is non robust, the
latter shows good resilience to rogue input, confirming the
effectiveness of our heuristic for outlier handling. In partic-
ular, the lines corresponding to MCB converge to one since
the scale factors converge to zero, thus indicating a com-
plete failure. The lines of N-MCB are irregular due to the
randomness of the data, which is amplified by the presence
of both outliers and a high level of missing data.

In this experiment we also analyze the performance of N-
MCB in terms of misclassification rate, which is the fraction

Table 1: Relative mean errors on the scale factors.

% missing FCB MCB N-MCB

Castle-P30 60 0.0990 0.0572 0.0326
Castle-P19 43 0.1872 0.0707 0.0359
Entry-P10 18 0.0402 0.0400 0.0124
Fountain-P11 2 0.0024 0.0017 0.0017
HerzJesu-P25 62 0.0808 0.0312 0.0044
HerzJesu-P8 18 0.0040 0.0108 0.0108

Average 0.0689 0.0353 0.0163

of effective outliers that are not removed. In all the trials we
obtain a misclassification rate below 5%, thus our heuristic
performs well as an outlier detector.

Real Data. We now consider the EPFL benchmark [20],
a small-size real image dataset for which ground-truth mo-
tion is provided. From this the ground-truth scales can be
easily computed, and they range from 0.7 to 43 meters. The
relative rotations and translation directions are obtained fol-
lowing a standard approach based on the essential matrix
factorization with a final bundle adjustment of camera pairs.

Table 1 shows the results obtained by all the variants of
our method, namely FCB, MCB and N-MCB with threshold
ε = 2◦. As in the case of simulated data, they all recover
the translations norm accurately, and the best precision is
achieved, on the average, by N-MCB.
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7. Conclusion
In this paper we have presented an in-depth study of the

ESC problem, within the broader context of global structure
from motion. After having provided theoretical conditions
under which such a problem has a unique solution, we have
presented an efficient algorithm to find it. The accuracy
of our solution for computing the scaling factors has been
demonstrated by means of synthetic and real experiments.

This method, in combination with a motion synchroniza-
tion technique that works in SE(3) [2], constitutes the core
of a global structure-from-motion pipeline that will be char-
acterized experimentally in future work.

On the theoretical side, we will explore the connection
of our notion of ESC solvability and analogous concepts
linked to the parallel (or bearing) rigidity [22, 26]. In this
context we also aim at clarifying the separate role of C and
B in Equation (14) in determining solvability.
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